1,509 research outputs found

    Optimal random search for a single hidden target

    Full text link
    A single target is hidden at a location chosen from a predetermined probability distribution. Then, a searcher must find a second probability distribution from which random search points are sampled such that the target is found in the minimum number of trials. Here it will be shown that if the searcher must get very close to the target to find it, then the best search distribution is proportional to the square root of the target distribution. For a Gaussian target distribution, the optimum search distribution is approximately a Gaussian with a standard deviation that varies inversely with how close the searcher must be to the target to find it. For a network, where the searcher randomly samples nodes and looks for the fixed target along edges, the optimum is to either sample a node with probability proportional to the square root of the out degree plus one or not at all.Comment: 13 pages, 5 figure

    Do Cascades Recur?

    Full text link
    Cascades of information-sharing are a primary mechanism by which content reaches its audience on social media, and an active line of research has studied how such cascades, which form as content is reshared from person to person, develop and subside. In this paper, we perform a large-scale analysis of cascades on Facebook over significantly longer time scales, and find that a more complex picture emerges, in which many large cascades recur, exhibiting multiple bursts of popularity with periods of quiescence in between. We characterize recurrence by measuring the time elapsed between bursts, their overlap and proximity in the social network, and the diversity in the demographics of individuals participating in each peak. We discover that content virality, as revealed by its initial popularity, is a main driver of recurrence, with the availability of multiple copies of that content helping to spark new bursts. Still, beyond a certain popularity of content, the rate of recurrence drops as cascades start exhausting the population of interested individuals. We reproduce these observed patterns in a simple model of content recurrence simulated on a real social network. Using only characteristics of a cascade's initial burst, we demonstrate strong performance in predicting whether it will recur in the future.Comment: WWW 201

    Information Flow in Social Groups

    Full text link
    We present a study of information flow that takes into account the observation that an item relevant to one person is more likely to be of interest to individuals in the same social circle than those outside of it. This is due to the fact that the similarity of node attributes in social networks decreases as a function of the graph distance. An epidemic model on a scale-free network with this property has a finite threshold, implying that the spread of information is limited. We tested our predictions by measuring the spread of messages in an organization and also by numerical experiments that take into consideration the organizational distance among individuals

    Mitigating Overexposure in Viral Marketing

    Full text link
    In traditional models for word-of-mouth recommendations and viral marketing, the objective function has generally been based on reaching as many people as possible. However, a number of studies have shown that the indiscriminate spread of a product by word-of-mouth can result in overexposure, reaching people who evaluate it negatively. This can lead to an effect in which the over-promotion of a product can produce negative reputational effects, by reaching a part of the audience that is not receptive to it. How should one make use of social influence when there is a risk of overexposure? In this paper, we develop and analyze a theoretical model for this process; we show how it captures a number of the qualitative phenomena associated with overexposure, and for the main formulation of our model, we provide a polynomial-time algorithm to find the optimal marketing strategy. We also present simulations of the model on real network topologies, quantifying the extent to which our optimal strategies outperform natural baselinesComment: In AAAI-1

    Can Cascades be Predicted?

    Full text link
    On many social networking web sites such as Facebook and Twitter, resharing or reposting functionality allows users to share others' content with their own friends or followers. As content is reshared from user to user, large cascades of reshares can form. While a growing body of research has focused on analyzing and characterizing such cascades, a recent, parallel line of work has argued that the future trajectory of a cascade may be inherently unpredictable. In this work, we develop a framework for addressing cascade prediction problems. On a large sample of photo reshare cascades on Facebook, we find strong performance in predicting whether a cascade will continue to grow in the future. We find that the relative growth of a cascade becomes more predictable as we observe more of its reshares, that temporal and structural features are key predictors of cascade size, and that initially, breadth, rather than depth in a cascade is a better indicator of larger cascades. This prediction performance is robust in the sense that multiple distinct classes of features all achieve similar performance. We also discover that temporal features are predictive of a cascade's eventual shape. Observing independent cascades of the same content, we find that while these cascades differ greatly in size, we are still able to predict which ends up the largest

    Local Search in Unstructured Networks

    Full text link
    We review a number of message-passing algorithms that can be used to search through power-law networks. Most of these algorithms are meant to be improvements for peer-to-peer file sharing systems, and some may also shed some light on how unstructured social networks with certain topologies might function relatively efficiently with local information. Like the networks that they are designed for, these algorithms are completely decentralized, and they exploit the power-law link distribution in the node degree. We demonstrate that some of these search algorithms can work well on real Gnutella networks, scale sub-linearly with the number of nodes, and may help reduce the network search traffic that tends to cripple such networks.Comment: v2 includes minor revisions: corrections to Fig. 8's caption and references. 23 pages, 10 figures, a review of local search strategies in unstructured networks, a contribution to `Handbook of Graphs and Networks: From the Genome to the Internet', eds. S. Bornholdt and H.G. Schuster (Wiley-VCH, Berlin, 2002), to be publishe
    corecore