23 research outputs found
Trophic positioning of meiofauna revealed by stable isotopes and food-web analyses
Despite important advances in the ecology of river food-webs, the strength and nature of the connection between the meio- and macrofaunal components of the web are still debated. Some unresolved issues are the effects of the inclusion of meiofaunal links and their temporal variations on the overall river food web properties, and the significance of autochtonous and allochtonous material for these components. In the present study we conducted gut content of macro- and meiofauna, and stable isotope analyses of meiofauna to examine seasonal food webs of a chalk stream. The results of the gut content analyses, confirmed by the δ13C signatures, revealed a seasonal shift from a dependence on autochthonous (biofilm) to allochthonous food sources. Here, we demonstrate that aggregating basal or meiofaunal species into single categories affects key web properties such as web size, links, linkage density, and predator-prey ratios. More importantly, seasonal variation in attributes characterized the entire web and these changes persist regardless of taxonomic resolution. Furthermore, our analyses evidenced discrete variations in δ15N across the meiofauna community with a trophic structure that confirms gut content analyses, placing the meiofauna high in the food web. We, therefore, conclude that small body-sized taxa can occur high in dynamic river food webs, questioning assumptions that trophic position increases with body size and that webs are static
Contributions to the functional anatomy of the feeding apparatus of five cyprinids of Parakrama Samudra (Sri Lanka)
The Influence of Acetone on the Kinetics of Water Electrolysis Examined at Polycrystalline Pt Electrode in Alkaline Solution
This study investigated the impact of acetone on the electrochemical behavior of polycrystalline platinum electrodes in 0.1 M NaOH solution, with respect to the kinetics of hydrogen and oxygen evolution reactions (HER and OER) and indirectly to the underpotential deposition of hydrogen (UPDH). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques were employed to analyze these processes for acetone concentrations ranging from 1.0 × 10−6 to 1.0 × 10−3 M. The addition of (CH3)2C=O enhanced the catalytic efficiency of alkaline water splitting, which was believed to be a result of a significant reduction in the surface tension phenomenon (due to mutual interaction of acetone and water molecules), thus considerably facilitating hydrogen bubble detachment from the Pt electrode. Key findings in this work are described with respect to facilitation of both the HER and the OER reactions’ kinetics by the presence of acetone (also undergoing Pt electroreduction over the potential range for UPDH) in the working solution, without an electrode surface poisoning effect. The latter implies significant opportunities for traces of organic additives into alkaline electrolyte to improve the industrial alkaline water electrolysis process
