1,819 research outputs found

    Specimen-agnostic guided wave inspection using recursive feedback

    Get PDF
    Lamb waves, a configuration of guided waves are often applied to the inspection of plate like structures. Their complex, multi-modal nature makes them well suited to the inspection of different defects. Control over their propagation direction allows the engineer to increase inspection distance and prospectively locate the defect. Schemes already exist, but they require knowledge of material and its dispersion curves. If the material composition is not known, or external factors are effecting its speed of sound then these schemes may not be appropriate. The recursive feedback algorithm can be used to enhance guided waves in a single direction without a-priori knowledge. In recursive feedback, a guided wave is generated using the first element of an array transducer. Over several subsequent iterations, this guided wave is reinforced by re-transmitting recorded out of plane displacements. In this work, recursive feedback has been applied to two inspection problems; a contaminated kissing bond and a plate with a defect. With the kissing bond, it is shown that the the contamination can be identified as the A0 mode of generated waves are absorbed. In the defective plate, the defect direction is identified by a 10 dB increase in reflected energy when the guided waves are enhanced in one direction

    The Impact of Isospin Breaking on the Distribution of Transition Probabilities

    Get PDF
    In the present paper we investigate the effect of symmetry breaking in the statistical distributions of reduced transition amplitudes and reduced transition probabilities. These quantities are easier to access experimentally than the components of the eigenvectors and were measured by Adams et al. for the electromagnetic transitions in ^{26}Al. We focus on isospin symmetry breaking described by a matrix model where both, the Hamiltonian and the electromagnetic operator, break the symmetry. The results show that for partial isospin conservation, the statistical distribution of the reduced transition probability can considerably deviate from the Porter-Thomas distribution.Comment: 16 pages, 8 figures, submitted to PR

    Large deviations for many Brownian bridges with symmetrised initial-terminal condition

    Get PDF
    Consider a large system of NN Brownian motions in Rd\mathbb{R}^d with some non-degenerate initial measure on some fixed time interval [0,β][0,\beta] with symmetrised initial-terminal condition. That is, for any ii, the terminal location of the ii-th motion is affixed to the initial point of the σ(i)\sigma(i)-th motion, where σ\sigma is a uniformly distributed random permutation of 1,...,N1,...,N. Such systems play an important role in quantum physics in the description of Boson systems at positive temperature 1/β1/\beta. In this paper, we describe the large-N behaviour of the empirical path measure (the mean of the Dirac measures in the NN paths) and of the mean of the normalised occupation measures of the NN motions in terms of large deviations principles. The rate functions are given as variational formulas involving certain entropies and Fenchel-Legendre transforms. Consequences are drawn for asymptotic independence statements and laws of large numbers. In the special case related to quantum physics, our rate function for the occupation measures turns out to be equal to the well-known Donsker-Varadhan rate function for the occupation measures of one motion in the limit of diverging time. This enables us to prove a simple formula for the large-N asymptotic of the symmetrised trace of eβHN{\rm e}^{-\beta \mathcal{H}_N}, where HN\mathcal{H}_N is an NN-particle Hamilton operator in a trap

    Discovery and Observations of ASASSN-13db, an EX Lupi-Type Accretion Event on a Low-Mass T Tauri Star

    Get PDF
    We discuss ASASSN-13db, an EX Lupi-type ("EXor") accretion event on the young stellar object (YSO) SDSS J051011.01-032826.2 (hereafter SDSSJ0510) discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). Using archival photometric data of SDSSJ0510 we construct a pre-outburst spectral energy distribution (SED) and find that it is consistent with a low-mass class II YSO near the Orion star forming region (d420d \sim 420 pc). We present follow-up photometric and spectroscopic observations of the source after the ΔV\Delta V \sim-5.4 magnitude outburst that began in September 2013 and ended in early 2014. These data indicate an increase in temperature and luminosity consistent with an accretion rate of 107\sim10^{-7} M\rm{M}_\odot yr1^{-1}, three or more orders of magnitude greater than in quiescence. Spectroscopic observations show a forest of narrow emission lines dominated by neutral metallic lines from Fe I and some low-ionization lines. The properties of ASASSN-13db are similar to those of the EXor prototype EX Lupi during its strongest observed outburst in late 2008.Comment: 14 pages, 4 figures, 1 table. Updated May 2014 to reflect changes in the final version published in ApJL. Photometric data presented in this submission are included as ancillary files. For a brief video explaining this paper, see http://youtu.be/yRCCrNJnvt

    Atom gratings produced by large angle atom beam splitters

    Get PDF
    An asymptotic theory of atom scattering by large amplitude periodic potentials is developed in the Raman-Nath approximation. The atom grating profile arising after scattering is evaluated in the Fresnel zone for triangular, sinusoidal, magneto-optical, and bichromatic field potentials. It is shown that, owing to the scattering in these potentials, two \QTR{em}{groups} of momentum states are produced rather than two distinct momentum components. The corresponding spatial density profile is calculated and found to differ significantly from a pure sinusoid.Comment: 16 pages, 7 figure

    Phenomenological model of elastic distortions near the spin-Peierls transition in CuGeO3CuGeO_3

    Full text link
    A phenomenological model of the Landau type forms the basis for a study of elastic distortions near the spin-Peierls transition TcT_c in CuGeO3CuGeO_3. The atomic displacements proposed by Hirota {\it et al.} [Phys. Rev. Lett. {\bf 73}, 736 (1994)] are accounted for by the model which includes linear coupling between CuCu and OO distortions. CuCu displacements are seen to be responsible for anomalies in the elastic properties {\it at} TcT_c, whereas incipient OO distortions give rise to temperature dependence below TcT_c. A discussion of possible critical behavior is also made.Comment: 1 figure available upon reques

    Supersymmetric Models with Higher Dimensional Operators

    Get PDF
    Using a superfield language it is shown that a 4D N=1 supersymmetric theory with higher derivative operators in either the Kahler or the superpotential part of the Lagrangian and with an otherwise arbitrary superpotential, is equivalent to a 4D N=1 theory of second order (i.e. without higher derivatives) with additional superfields and renormalised interactions. If the theory has no other higher dimensional operators, under additional assumptions for the analytical continuation Minkowski-Euclidean space, the theory can be renormalisable. We provide examples where a free theory with trivial supersymmetry breaking provided by a linear superpotential becomes, in the presence of higher derivatives terms and in the second order version, a non-trivial interactive one with spontaneous supersymmetry breaking. The couplings of the equivalent theory acquire a threshold correction through their dependence on the scale of the higher dimensional operator(s). The scalar potential in the second order theory is not necessarily positive definite, and one can in principle have a vanishing potential with broken supersymmetry. We provide an application to MSSM and argue that at tree-level and for a mass scale associated to a higher derivative term in the TeV range, the Higgs mass can be lifted above the current experimental limits.Using a superfield language it is shown that a 4D N=1 supersymmetric theory with higher derivative operators in either the Kahler or the superpotential part of the Lagrangian and with an otherwise arbitrary superpotential, is equivalent to a 4D N=1 theory of second order (i.e. without higher derivatives) with additional superfields and renormalised interactions. If the theory has no other higher dimensional operators, under additional assumptions for the analytical continuation Minkowski-Euclidean space, the theory can be renormalisable. We provide examples where a free theory with trivial supersymmetry breaking provided by a linear superpotential becomes, in the presence of higher derivatives terms and in the second order version, a non-trivial interactive one with spontaneous supersymmetry breaking. The couplings of the equivalent theory acquire a threshold correction through their dependence on the scale of the higher dimensional operator(s). The scalar potential in the second order theory is not necessarily positive definite, and one can in principle have a vanishing potential with broken supersymmetry. We provide an application to MSSM and argue that at tree-level and for a mass scale associated to a higher derivative term in the TeV range, the Higgs mass can be lifted above the current experimental limits

    Modification of the ground state in Sm-Sr manganites by oxygen isotope substitution

    Full text link
    The effect of 16^{16}O \to 18^{18}O isotope substitution on electrical resistivity and magnetic susceptibility of Sm1x_{1-x}Srx_xMnO3_3 manganites is analyzed. It is shown that the oxygen isotope substitution drastically affects the phase diagram at the crossover region between the ferromagnetic metal state and that of antiferromagnetic insulator (0.4 <x<< x < 0.6), and induces the metal-insulator transition at for xx = 0.475 and 0.5. The nature of antiferromagnetic insulator phase is discussed.Comment: 4 pages, 3 eps figures, RevTeX, submitted to Phys. Rev. Let

    Stirring Strongly Coupled Plasma

    Full text link
    We determine the energy it takes to move a test quark along a circle of radius L with angular frequency w through the strongly coupled plasma of N=4 supersymmetric Yang-Mills (SYM) theory. We find that for most values of L and w the energy deposited by stirring the plasma in this way is governed either by the drag force acting on a test quark moving through the plasma in a straight line with speed v=Lw or by the energy radiated by a quark in circular motion in the absence of any plasma, whichever is larger. There is a continuous crossover from the drag-dominated regime to the radiation-dominated regime. In the crossover regime we find evidence for significant destructive interference between energy loss due to drag and that due to radiation as if in vacuum. The rotating quark thus serves as a model system in which the relative strength of, and interplay between, two different mechanisms of parton energy loss is accessible via a controlled classical gravity calculation. We close by speculating on the implications of our results for a quark that is moving through the plasma in a straight line while decelerating, although in this case the classical calculation breaks down at the same value of the deceleration at which the radiation-dominated regime sets in.Comment: 27 pages LaTex, 5 figure

    Nuclear parton distributions at next to leading order

    Full text link
    We perform a next to leading order QCD global analysis of nuclear deep inelastic scattering and Drell-Yan data using the convolution approach to parameterize nuclear parton densities. We find both a significant improvement in the agreement with data compared to previous extractions, and substantial differences in the scale dependence of nuclear effects compared to leading order analyses.Comment: 9 pages, 10 figure
    corecore