1,206 research outputs found
On the stability of travelling waves with vorticity obtained by minimisation
We modify the approach of Burton and Toland [Comm. Pure Appl. Math. (2011)]
to show the existence of periodic surface water waves with vorticity in order
that it becomes suited to a stability analysis. This is achieved by enlarging
the function space to a class of stream functions that do not correspond
necessarily to travelling profiles. In particular, for smooth profiles and
smooth stream functions, the normal component of the velocity field at the free
boundary is not required a priori to vanish in some Galilean coordinate system.
Travelling periodic waves are obtained by a direct minimisation of a functional
that corresponds to the total energy and that is therefore preserved by the
time-dependent evolutionary problem (this minimisation appears in Burton and
Toland after a first maximisation). In addition, we not only use the
circulation along the upper boundary as a constraint, but also the total
horizontal impulse (the velocity becoming a Lagrange multiplier). This allows
us to preclude parallel flows by choosing appropriately the values of these two
constraints and the sign of the vorticity. By stability, we mean conditional
energetic stability of the set of minimizers as a whole, the perturbations
being spatially periodic of given period.Comment: NoDEA Nonlinear Differential Equations and Applications, to appea
Non-invasive laminar inference with MEG: comparison of methods and source inversion algorithms
Magnetoencephalography (MEG) is a direct measure of neuronal current flow; its anatomical resolution is therefore not constrained by physiology but rather by data quality and the models used to explain these data. Recent simulation work has shown that it is possible to distinguish between signals arising in the deep and superficial cortical laminae given accurate knowledge of these surfaces with respect to the MEG sensors. This previous work has focused around a single inversion scheme (multiple sparse priors) and a single global parametric fit metric (free energy). In this paper we use several different source inversion algorithms and both local and global, as well as parametric and non-parametric fit metrics in order to demonstrate the robustness of the discrimination between layers. We find that only algorithms with some sparsity constraint can successfully be used to make laminar discrimination. Importantly, local t-statistics, global cross-validation and free energy all provide robust and mutually corroborating metrics of fit. We show that discrimination accuracy is affected by patch size estimates, cortical surface features, and lead field strength, which suggests several possible future improvements to this technique. This study demonstrates the possibility of determining the laminar origin of MEG sensor activity, and thus directly testing theories of human cognition that involve laminar- and frequency-specific mechanisms. This possibility can now be achieved using recent developments in high precision MEG, most notably the use of subject-specific head-casts, which allow for significant increases in data quality and therefore anatomically precise MEG recordings
Prevention is better than cure, but...: Preventive medication as a risk to ordinariness?
Preventive health remains at the forefront of public health concerns; recent initiatives, such as the NHS health check, may lead to recommendations for medication in response to the identification of 'at risk' individuals. Little is known about lay views of preventive medication. This paper uses the case of aspirin as a prophylactic against heart disease to explore views among people invited to screening for a trial investigating the efficacy of such an approach. Qualitative interviews (N=46) and focus groups (N=5, participants 31) revealed dilemmas about preventive medication in the form of clashes between norms: first, in general terms, assumptions about the benefit of prevention were complicated by dislike of medication; second, the individual duty to engage in prevention was complicated by the need not to be over involved with one's own health; third, the potential appeal of this alternative approach to health promotion was complicated by unease about the implications of encouraging irresponsible behaviour among others. Though respondents made different decisions about using the drug, they reported very similar ways of trying to resolve these conflicts, drawing upon concepts of necessity and legitimisation and the special ordinariness of the particular dru
Racetrack Inflation
We develop a model of eternal topological inflation using a racetrack
potential within the context of type IIB string theory with KKLT volume
stabilization. The inflaton field is the imaginary part of the K\"ahler
structure modulus, which is an axion-like field in the 4D effective field
theory. This model does not require moving branes, and in this sense it is
simpler than other models of string theory inflation. Contrary to
single-exponential models, the structure of the potential in this example
allows for the existence of saddle points between two degenerate local minima
for which the slow-roll conditions can be satisfied in a particular range of
parameter space. We conjecture that this type of inflation should be present in
more general realizations of the modular landscape. We also consider
`irrational' models having a dense set of minima, and discuss their possible
relevance for the cosmological constant problem.Comment: 23 pages 7 figures. The final version with minor modifications, to
appear in JHE
Inflation, cold dark matter, and the central density problem
A problem with high central densities in dark halos has arisen in the context
of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is
often justified by appealing to the inflation scenario, inflationary models
with mild deviations from scale-invariance are not uncommon and models with
significant running of the spectral index are plausible. Even mild deviations
from scale-invariance can be important because halo collapse times and
densities depend on the relative amount of small-scale power. We choose several
popular models of inflation and work out the ramifications for galaxy central
densities. For each model, we calculate its COBE-normalized power spectrum and
deduce the implied halo densities using a semi-analytic method calibrated
against N-body simulations. We compare our predictions to a sample of dark
matter-dominated galaxies using a non-parametric measure of the density. While
standard n=1, LCDM halos are overdense by a factor of 6, several of our example
inflation+CDM models predict halo densities well within the range preferred by
observations. We also show how the presence of massive (0.5 eV) neutrinos may
help to alleviate the central density problem even with n=1. We conclude that
galaxy central densities may not be as problematic for the CDM paradigm as is
sometimes assumed: rather than telling us something about the nature of the
dark matter, galaxy rotation curves may be telling us something about inflation
and/or neutrinos. An important test of this idea will be an eventual consensus
on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our
successful models have values of sigma_8 approximately 0.75, which is within
the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1)
are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's
Comments, error in Eq. (18) corrected, references updated and corrected,
conclusions unchanged. Version accepted for publication in Phys. Rev. D,
scheduled for 15 August 200
Non-paraxial Split-step Finite-difference Method for Beam Propagation
A method based on symmetrized splitting of the propagation operator in the finite difference scheme for non-paraxial beam propagation is presented. The formulation allows the solution of the second order scalar wave equation without having to make the slowly varying envelope and one-way propagation approximations. The method is highly accurate and numerically efficient. Unlike most Padé approximant based methods, it is non-iterative in nature and requires less computation. The method can be used for bi-directional propagation as well
New hadrons as ultra-high energy cosmic rays
Ultra-high energy cosmic ray (UHECR) protons produced by uniformly
distributed astrophysical sources contradict the energy spectrum measured by
both the AGASA and HiRes experiments, assuming the small scale clustering of
UHECR observed by AGASA is caused by point-like sources. In that case, the
small number of sources leads to a sharp exponential cutoff at the energy
E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve
this cutoff problem. For the first time we discuss the production of such
hadrons in proton collisions with infrared/optical photons in astrophysical
sources. This production mechanism, in contrast to proton-proton collisions,
requires the acceleration of protons only to energies E<10^{21} eV. The diffuse
gamma-ray and neutrino fluxes in this model obey all existing experimental
limits. We predict large UHE neutrino fluxes well above the sensitivity of the
next generation of high-energy neutrino experiments. As an example we study
hadrons containing a light bottom squark. These models can be tested by
accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR
The Fueling and Evolution of AGN: Internal and External Triggers
In this chapter, I review the fueling and evolution of active galactic nuclei
(AGN) under the influence of internal and external triggers, namely intrinsic
properties of host galaxies (morphological or Hubble type, color, presence of
bars and other non-axisymmetric features, etc) and external factors such as
environment and interactions. The most daunting challenge in fueling AGN is
arguably the angular momentum problem as even matter located at a radius of a
few hundred pc must lose more than 99.99 % of its specific angular momentum
before it is fit for consumption by a BH. I review mass accretion rates,
angular momentum requirements, the effectiveness of different fueling
mechanisms, and the growth and mass density of black BHs at different epochs. I
discuss connections between the nuclear and larger-scale properties of AGN,
both locally and at intermediate redshifts, outlining some recent results from
the GEMS and GOODS HST surveys.Comment: Invited Review Chapter to appear in LNP Volume on "AGN Physics on All
Scales", Chapter 6, in press. 40 pages, 12 figures. Typo in Eq 5 correcte
Double-Spin Asymmetry in the Cross Section for Exclusive rho^0 Production in Lepton-Proton Scattering
Evidence for a positive longitudinal double-spin asymmetry = 0.24
+-0.11 (stat) +-0.02 (syst) in the cross section for exclusive diffractive
rho^0(770) vector meson production in polarised lepton-proton scattering was
observed by the HERMES experiment. The longitudinally polarised 27.56 GeV HERA
positron beam was scattered off a longitudinally polarised pure hydrogen gas
target. The average invariant mass of the photon-proton system has a value of
= 4.9 GeV, while the average negative squared four-momentum of the virtual
photon is = 1.7 GeV^2. The ratio of the present result to the
corresponding spin asymmetry in inclusive deep-inelastic scattering is in
agreement with an early theoretical prediction based on the generalised vector
meson dominance model.Comment: 10 pages, 4 embedded figures, LaTe
Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration
Extensive experimental data from high-energy nucleus-nucleus collisions were
recorded using the PHENIX detector at the Relativistic Heavy Ion Collider
(RHIC). The comprehensive set of measurements from the first three years of
RHIC operation includes charged particle multiplicities, transverse energy,
yield ratios and spectra of identified hadrons in a wide range of transverse
momenta (p_T), elliptic flow, two-particle correlations, non-statistical
fluctuations, and suppression of particle production at high p_T. The results
are examined with an emphasis on implications for the formation of a new state
of dense matter. We find that the state of matter created at RHIC cannot be
described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted
to Nuclear Physics A as a regular article; v3 has minor changes in response
to referee comments. Plain text data tables for the points plotted in figures
for this and previous PHENIX publications are (or will be) publicly available
at http://www.phenix.bnl.gov/papers.htm
- …
