8,629 research outputs found
A heterotic sigma model with novel target geometry
We construct a (1,2) heterotic sigma model whose target space geometry
consists of a transitive Lie algebroid with complex structure on a Kaehler
manifold. We show that, under certain geometrical and topological conditions,
there are two distinguished topological half--twists of the heterotic sigma
model leading to A and B type half--topological models. Each of these models is
characterized by the usual topological BRST operator, stemming from the
heterotic (0,2) supersymmetry, and a second BRST operator anticommuting with
the former, originating from the (1,0) supersymmetry. These BRST operators
combined in a certain way provide each half--topological model with two
inequivalent BRST structures and, correspondingly, two distinct perturbative
chiral algebras and chiral rings. The latter are studied in detail and
characterized geometrically in terms of Lie algebroid cohomology in the
quasiclassical limit.Comment: 83 pages, no figures, 2 references adde
Characterising epithelial tissues using persistent entropy
In this paper, we apply persistent entropy, a novel topological statistic,
for characterization of images of epithelial tissues. We have found out that
persistent entropy is able to summarize topological and geometric information
encoded by \alpha-complexes and persistent homology. After using some
statistical tests, we can guarantee the existence of significant differences in
the studied tissues.Comment: 12 pages, 7 figures, 4 table
Probing the formation of intermediate- to high-mass stars in protoclusters II. Comparison between millimeter interferometric observations of NGC 2264-C and SPH simulations of a collapsing clump
The earliest phases of massive star formation in clusters are still poorly
understood. Here, we test the hypothesis for high-mass star formation proposed
in our earlier paper (Peretto et al. 2006). In order to confirm the physical
validity of this hypothesis, we carried out IRAM Plateau de Bure interferometer
observations of NGC 2264-C and performed SPH numerical simulations of the
collapse of a Jeans-unstable, prolate dense clump. Our Plateau de Bure
observations reveal the presence of a new compact source (C-MM13) located only
\~ 10000 AU away, but separated by ~ 1.1 km/s in (projected) velocity, from the
most massive Class 0 object (C-MM3) lying at the very center of NGC 2264-C.
Detailed comparison with our numerical SPH simulations supports the view that
NGC 2264-C is an elongated cluster-forming clump in the process of collapsing
and fragmenting along its long axis, leading to a strong dynamical interaction
and possible protostar merger in the central region of the clump. The present
study also sets several quantitative constraints on the initial conditions of
large-scale collapse in NGC 2264-C. Our hydrodynamic simulations indicate that
the observed velocity pattern characterizes an early phase of protocluster
collapse which survives for an only short period of time (i.e., < 10^5 yr). To
provide a good match to the observations the simulations require an initial
ratio of turbulent to gravitational energy of only ~ 5 %, which strongly
suggests that the NGC 2264-C clump is structured primarily by gravity rather
than turbulence. The required "cold'' initial conditions may result from rapid
compression by an external trigger.Comment: 15 pages, 8 figures, accepted for publication in A&
Scientific questions for the exploration of the terrestrial planets and Jupiter - Advanced planetary missions technology program Progress report
Scientific questions and experimental design for planetary exploration of Jupiter, Mars, Mercury, and Venu
A unitary model for structure functions and diffractive production at small x
We propose a unified approach which describes both structure functions in the
small- region and diffractive production in -interactions. It is
shown that the model, based on reggeon calculus and a quark-parton picture of
the interaction, gives a good description of available experimental data in a
broad region of (including ) with a single Pomeron of intercept
. Predictions for very small are given and the problem
of saturation of parton densities is discussed.Comment: 43 pages, latex, 15 postscript figure
Coordinated optimization of visual cortical maps (I) Symmetry-based analysis
In the primary visual cortex of primates and carnivores, functional
architecture can be characterized by maps of various stimulus features such as
orientation preference (OP), ocular dominance (OD), and spatial frequency. It
is a long-standing question in theoretical neuroscience whether the observed
maps should be interpreted as optima of a specific energy functional that
summarizes the design principles of cortical functional architecture. A
rigorous evaluation of this optimization hypothesis is particularly demanded by
recent evidence that the functional architecture of OP columns precisely
follows species invariant quantitative laws. Because it would be desirable to
infer the form of such an optimization principle from the biological data, the
optimization approach to explain cortical functional architecture raises the
following questions: i) What are the genuine ground states of candidate energy
functionals and how can they be calculated with precision and rigor? ii) How do
differences in candidate optimization principles impact on the predicted map
structure and conversely what can be learned about an hypothetical underlying
optimization principle from observations on map structure? iii) Is there a way
to analyze the coordinated organization of cortical maps predicted by
optimization principles in general? To answer these questions we developed a
general dynamical systems approach to the combined optimization of visual
cortical maps of OP and another scalar feature such as OD or spatial frequency
preference.Comment: 90 pages, 16 figure
Circumstellar discs: What will be next?
This prospective chapter gives our view on the evolution of the study of
circumstellar discs within the next 20 years from both observational and
theoretical sides. We first present the expected improvements in our knowledge
of protoplanetary discs as for their masses, sizes, chemistry, the presence of
planets as well as the evolutionary processes shaping these discs. We then
explore the older debris disc stage and explain what will be learnt concerning
their birth, the intrinsic links between these discs and planets, the hot dust
and the gas detected around main sequence stars as well as discs around white
dwarfs.Comment: invited review; comments welcome (32 pages
Primary and malignant cholangiocytes undergo CD40 mediated Fas dependent Apoptosis, but are insensitive to direct activation with exogenous fas ligand
Introduction
Cholangiocarcinoma is a rare malignancy of the biliary tract, the incidence of which is rising, but the pathogenesis of which remains uncertain. No common genetic defects have been described but it is accepted that chronic inflammation is an important contributing factor. We have shown that primary human cholangiocyte and hepatocyte survival is tightly regulated via co-operative interactions between two tumour necrosis family (TNF) receptor family members; CD40 and Fas (CD95). Functional deficiency of CD154, the ligand for CD40, leads to a failure of clearance of biliary tract infections and a predisposition to cholangiocarcinoma implying a direct link between TNF receptor-mediated apoptosis and the development of cholangiocarcinoma.
Aims
To determine whether malignant cholangiocytes display defects in CD40 mediated apoptosis. By comparing CD40 and Fas-mediated apoptosis and intracellular signalling in primary human cholangiocytes and three cholangiocyte cell lines.
Results
Primary cholangiocytes and cholangiocyte cell lines were relatively insensitive to direct Fas-mediated killing with exogenous FasL when compared with Jurkat cells, which readily underwent Fas-mediated apoptosis, but were extremely sensitive to CD154 stimulation. The sensitivity of cells to CD40 activation was similar in magnitude in both primary and malignant cells and was STAT-3 and AP-1 dependent in both.
Conclusions
1) Both primary and malignant cholangiocytes are relatively resistant to Fas–mediated killing but show exquisite sensitivity to CD154, suggesting that the CD40 pathway is intact and fully functional in both primary and malignant cholangiocytes 2) The relative insensitivity of cholangiocytes to Fas activation demonstrates the importance of CD40 augmentation of Fas dependent death in these cells. Agonistic therapies which target CD40 and associated intracellular signalling pathways may be effective in promoting apoptosis of malignant cholangiocytes
A primary care, multi-disciplinary disease management program for opioid-treated patients with chronic non-cancer pain and a high burden of psychiatric comorbidity
BACKGROUND: Chronic non-cancer pain is a common problem that is often accompanied by psychiatric comorbidity and disability. The effectiveness of a multi-disciplinary pain management program was tested in a 3 month before and after trial. METHODS: Providers in an academic general medicine clinic referred patients with chronic non-cancer pain for participation in a program that combined the skills of internists, clinical pharmacists, and a psychiatrist. Patients were either receiving opioids or being considered for opioid therapy. The intervention consisted of structured clinical assessments, monthly follow-up, pain contracts, medication titration, and psychiatric consultation. Pain, mood, and function were assessed at baseline and 3 months using the Brief Pain Inventory (BPI), the Center for Epidemiological Studies-Depression Scale scale (CESD) and the Pain Disability Index (PDI). Patients were monitored for substance misuse. RESULTS: Eighty-five patients were enrolled. Mean age was 51 years, 60% were male, 78% were Caucasian, and 93% were receiving opioids. Baseline average pain was 6.5 on an 11 point scale. The average CESD score was 24.0, and the mean PDI score was 47.0. Sixty-three patients (73%) completed 3 month follow-up. Fifteen withdrew from the program after identification of substance misuse. Among those completing 3 month follow-up, the average pain score improved to 5.5 (p = 0.003). The mean PDI score improved to 39.3 (p < 0.001). Mean CESD score was reduced to 18.0 (p < 0.001), and the proportion of depressed patients fell from 79% to 54% (p = 0.003). Substance misuse was identified in 27 patients (32%). CONCLUSIONS: A primary care disease management program improved pain, depression, and disability scores over three months in a cohort of opioid-treated patients with chronic non-cancer pain. Substance misuse and depression were common, and many patients who had substance misuse identified left the program when they were no longer prescribed opioids. Effective care of patients with chronic pain should include rigorous assessment and treatment of these comorbid disorders and intensive efforts to insure follow up
- …
