4,653 research outputs found
Barium cloud evolution and striation formation in the magnetospheric release on September 21, 1971
The joint NASA-Max Planck Institute Barium Ion Cloud (BIC) Experiment on September 21, 1971 involved the release of 1.7 kg of neutral barium at an altitude of 31,500 km at a latitude of 6.93 deg N. and a longitude of 74.40 deg W. A theoretical model describing the barium neutral cloud expansion and the ion cloud formation is developed. The mechanism of formation of the striational features observed in the release is also discussed. Two candidate instabilities, which may contribute to striation formation, are examined. The drift instability stemming from the outwardly directed drag force exerted on the ions by the outstreaming neutrals is rejected on the grounds that the ion density is too low during the collision-dominated phase of the cloud expansion to support this kind of instability. The joint action of Rayleigh-Taylor and flute instabilities plausibly accounts for the observed striational structure. This same mechanism may well be operative at times of sudden injection of plasma into the inner magnetosphere during geomagnetic storms and may thus contribute to the formation of field-alined inhomogeneities which serve as whistler ducts
Integrated gas turbine engine-nacelle
A nacelle for use with a gas turbine engine is provided with an integral webbed structure resembling a spoked wheel for rigidly interconnecting the nacelle and engine. The nacelle is entirely supported in its spacial relationship with the engine by means of the webbed structure. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus, while the outer surface of the nacelle defines a streamlined envelope for the engine
Integrated gas turbine engine-nacelle
A nacelle for use with a gas turbine engine is presented. An integral webbed structure resembling a spoked wheel for rigidly interconnecting the nacelle and engine, provides lightweight support. The inner surface of the nacelle defines the outer limits of the engine motive fluid flow annulus while the outer surface of the nacelle defines a streamlined envelope for the engine
Results of magnetospheric barium ion cloud experiment of 1971
The barium ion cloud experiment involved the release of about 2 kg of barium at an altitude of 31 482 km, a latitude of 6.926 N., and a longitude of 74.395 W. Significant erosion of plasma from the main ion core occurred during the initial phase of the ion cloud expansion. From the motion of the outermost striational filaments, the electric field components were determined to be 0.19 mV/m in the westerly direction and 0.68 mV/m in the inward direction. The differences between these components and those measured from balloons flown in the proximity of the extremity of the field line through the release point implied the existence of potential gradients along the magnetic field lines. The deceleration of the main core was greater than theoretically predicted. This was attributed to the formation of a polarization wake, resulting in an increase of the area of interaction and resistive dissipation at ionospheric levels. The actual orientation of the magnetic field line through the release point differed by about 10.5 deg from that predicted by magnetic field models that did not include the effect of ring current
Uncovering Spiral Structure in Flocculent Galaxies
We present K'(2.1 micron) observations of four nearby flocculent spirals,
which clearly show low-level spiral structure and suggest that kiloparsec-scale
spiral structure is more prevalent in flocculent spirals than previously
supposed. In particular, the prototypical flocculent spiral NGC 5055 is shown
to have regular, two-arm spiral structure to a radius of 4 kpc in the near
infrared, with an arm-interarm contrast of 1.3. The spiral structure in all
four galaxies is weaker than that in grand design galaxies. Taken in unbarred
galaxies with no large, nearby companions, these data are consistent with the
modal theory of spiral density waves, which maintains that density waves are
intrinsic to the disk. As an alternative, mechanisms for driving spiral
structure with non-axisymmetric perturbers are also discussed. These
observations highlight the importance of near infrared imaging for exploring
the range of physical environments in which large-scale dynamical processes,
such as density waves, are important.Comment: 12 pages AASTeX; 3 compressed PS figures can be retrieved from
ftp://ftp.astro.umd.edu/pub/michele as file thornley.tar (1.6Mbytes).
Accepted to Ap.J. Letters.(Figures now also available here, and from
ftp://ftp.astro.umd.edu/pub/michele , in GIF format.
Improved Measurement of Muon Antineutrino Disappearance in MINOS
We report an improved measurement of ν̅_μ disappearance over a distance of 735 km using the MINOS detectors and the Fermilab Main Injector neutrino beam in a ν̅_μ-enhanced configuration. From a total exposure of 2.95×10^20 protons on target, of which 42% have not been previously analyzed, we make the most precise measurement of Δm̅^2=[2.62_(-0.28)^(+0.31)(stat)±0.09(syst)]×10^(-3) eV^2 and constrain the ν_μ mixing angle sin^(2)(2θ̅)>0.75 (90% C.L.). These values are in agreement with Δm^2 and sin^(2)(2θ) measured for νμ, removing the tension reported in [ P. Adamson et al. Phys. Rev. Lett. 107 021801 (2011)]
Search for Lorentz Invariance and CPT Violation with the MINOS Far Detector
We searched for a sidereal modulation in the MINOS far detector neutrino rate. Such a signal would be
a consequence of Lorentz and CPT violation as described by the standard-model extension framework. It
also would be the first detection of a perturbative effect to conventional neutrino mass oscillations. We
found no evidence for this sidereal signature, and the upper limits placed on the magnitudes of the Lorentz
and CPT violating coefficients describing the theory are an improvement by factors of 20–510 over the
current best limits found by using the MINOS near detector
Spreading of Latex Particles on a Substrate
We have investigated both experimentally and theoretically the spreading
behavior of latex particles deposited on solid substrates. These particles,
which are composed of cross-linked polymer chains, have an intrinsic elastic
modulus. We show that the elasticity must be considered to account for the
observed contact angle between the particle and the solid substrate, as
measured through atomic force microscopy techniques. In particular, the work of
adhesion computed within our model can be significantly larger than that from
the classical Dupr\'{e} formula.Comment: 7 pages, 7 figures, to appear in Europhys. Let
Deformation of a nearly hemispherical conducting drop due to an electric field: theory and experiment
We consider, both theoretically and experimentally, the deformation due to an electric field of a pinned nearly-hemispherical static sessile drop of an ionic fluid with a high conductivity resting on the lower substrate of a parallel plate capacitor. Using both numerical and asymptotic approaches we find solutions to the coupled electrostatic and augmented Young–Laplace equations which agree very well with the experimental results. Our asymptotic solution for the drop interface extends previous work in two ways, namely to drops that have zero-field contact angles that are not exactly π/2 and to higher order in the applied electric field, and provides useful predictive equations for the changes in the height, contact angle and pressure as functions of the zero-field contact angle, drop radius, surface tension and applied electric field. The asymptotic solution requires some numerical computations, and so a surprisingly accurate approximate analytical asymptotic solution is also obtained
Inhibition of mTORC1 inhibits lytic replication of Epstein-Barr virus in a cell-type specific manner
BACKGROUND: Epstein-Barr virus is a human herpesvirus that infects a majority of the human population. Primary infection of Epstein-Barr virus (EBV) causes the syndrome infectious mononucleosis. This virus is also associated with several cancers, including Burkitt’s lymphoma, post-transplant lymphoproliferative disorder and nasopharyngeal carcinoma. As all herpesvirus family members, EBV initially replicates lytically to produce abundant virus particles, then enters a latent state to remain within the host indefinitely. METHODS: Through a genetic screen in Drosophila, we determined that reduction of Drosophila Tor activity altered EBV immediate-early protein function. To further investigate this finding, we inhibited mTOR in EBV-positive cells and investigated subsequent changes to lytic replication via Western blotting, flow cytometry, and quantitative PCR. The student T-test was used to evaluate significance. RESULTS: mTOR, the human homolog of Drosophila Tor, is an important protein at the center of a major signaling pathway that controls many aspects of cell biology. As the EBV immediate-early genes are responsible for EBV lytic replication, we examined the effect of inhibition of mTORC1 on EBV lytic replication in human EBV-positive cell lines. We determined that treatment of cells with rapamycin, which is an inhibitor of mTORC1 activity, led to a reduction in the ability of B cell lines to undergo lytic replication. In contrast, EBV-positive epithelial cell lines underwent higher levels of lytic replication when treated with rapamycin. CONCLUSIONS: Overall, the responses of EBV-positive cell lines vary when treated with mTOR inhibitors, and this may be important when considering such inhibitors as anti-cancer therapeutic agents
- …
