96 research outputs found
When do trade unions support universal demands? Organizational context and trade union strategies in the US and UK at the turn of the 20th century
When do labor movements come to support universal welfare policies? This article examines this question through a comparative account of the British and American labor movements at the turn of the twentieth century. Drawing on newspaper and meeting records from the Amalgamated Society of Engineers (ASE), the Amalgamated Society of Railway Servants (ASRS), the Cigarmakers International Union (CMIU), and the Brotherhood of Locomotive Firemen and Enginemen (BLF) from the mid-nineteenth century to World War I, it considers why, given a common tradition of exclusive benefits, the two movements diverged on the question of universal state health and pension schemes at the turn of the century—with the British labor movement abandoning its voluntarist orientation and the AFL preserving it. Complementing existing sociological accounts that emphasize state and party structure, sectoral composition, pace and quality of industrial change, and the demographic makeup of labor movements, this article builds on approaches from the sociology of organizations in centering the importance of organizational arenas in shaping trade union strategies and aims. In particular, it investigates the role of friendly and fraternal societies in structuring trade union interests over this period. The article demonstrates how changes within the friendly and fraternal society movement shaped the contextual significance and strategic value of benefit provision in each trade union over time. In doing so, it opens the way for a deeper reflection on the importance of organizational reasoning in shaping trade union organizing and the trajectory of welfare institutions
Legal boundaries, organizational fields, and trade union politics: the development of railway unions in the US and the UK
Throughout the nineteenth century, powerful railway unions in the USA and the UK cultivated an expansive system of voluntary sickness, death, unemployment, and superannuation benefits. By the early twentieth century, the movements had diverged: while the British Amalgamated Society of Railway Servants relinquished its commitment to voluntarism in favor of state healthcare and pensions, the American Railway Brotherhoods persisted along voluntarist lines, resisting social insurance in favor of exclusive schemes for their white male membership. What accounts for these diverging orientations? I highlight the importance of organizational forms as a lens for understanding comparative trade union strategy, emphasizing the role of law in designating legitimate forms of working-class association. I demonstrate that governing elites in both countries promoted voluntarism as a benign form of working-class organization throughout much of the nineteenth century. Consequently, I argue, early American and British trade unions adopted benefits in part because they enabled them to mimic the far more respected and legitimate friendly and fraternal mutual benefit societies. Toward the end of the century, the context had changed: while alternative organizational avenues were opened for trade unions in the UK, benefits presented an ongoing organizational lifeline for American unions. In defining and redefining the boundaries of legitimate forms of workers’ associations, legal decisions in both countries shaped not only trade union organizing strategies in the short run but also their positioning in broader social struggles
Pentamidine rescues contractility and rhythmicity in a Drosophila model of myotonic dystrophy heart dysfunction
Up to 80% of individuals with myotonic dystrophy type 1 (DM1) will develop cardiac abnormalities at some point during the progression of their disease, the most common of which is heart blockage of varying degrees. Such blockage is characterized by conduction defects and supraventricular and ventricular tachycardia, and carries a high risk of sudden cardiac death. Despite its importance, very few animal model studies have focused on the heart dysfunction in DM1. Here, we describe the characterization of the heart phenotype in a Drosophila model expressing pure expanded CUG repeats under the control of the cardiomyocyte-specific driver GMH5-Gal4. Morphologically, expression of 250 CUG repeats caused abnormalities in the parallel alignment of the spiral myofibrils in dissected fly hearts, as revealed by phalloidin staining. Moreover, combined immunofluorescence and in situ hybridization of Muscleblind and CUG repeats, respectively, confirmed detectable ribonuclear foci and Muscleblind sequestration, characteristic features of DM1, exclusively in flies expressing the expanded CTG repeats. Similarly to what has been reported in humans with DM1, heart-specific expression of toxic RNA resulted in reduced survival, increased arrhythmia, altered diastolic and systolic function, reduced heart tube diameters and reduced contractility in the model flies. As a proof of concept that the fly heart model can be used for in vivo testing of promising therapeutic compounds, we fed flies with pentamidine, a compound previously described to improve DM1 phenotypes. Pentamidine not only released Muscleblind from the CUG RNA repeats and reduced ribonuclear formation in the Drosophila heart, but also rescued heart arrhythmicity and contractility, and improved fly survival in animals expressing 250 CUG repeats
Drosophila muscleblind Codes for Proteins with One and Two Tandem Zinc Finger Motifs
Muscleblind-like proteins, Muscleblind (Mbl) in Drosophila and MBNL1-3 in vertebrates, are regulators of alternative splicing. Human MBNL1 is a key factor in the etiology of myotonic dystrophy (DM), a muscle wasting disease caused by the occurrence of toxic RNA molecules containing CUG/CCUG repeats. MBNL1 binds to these RNAs and is sequestered in nuclear foci preventing it from exerting its normal function, which ultimately leads to mis-spliced mRNAs, a major cause of the disease. Muscleblind-proteins bind to RNAs via N-terminal zinc fingers of the Cys3-His type. These zinc fingers are arranged in one (invertebrates) or two (vertebrates) tandem zinc finger (TZF) motifs with both fingers targeting GC steps in the RNA molecule. Here I show that mbl genes in Drosophila and in other insects also encode proteins with two TZF motifs, highly similar to vertebrate MBNL proteins. In Drosophila the different protein isoforms have overlapping but possibly divergent functions in vivo, evident by their unequal capacities to rescue the splicing defects observed in mbl mutant embryos. In addition, using whole transcriptome analysis, I identified several new splicing targets for Mbl in Drosophila embryos. Two of these novel targets, kkv (krotzkopf-verkehrt, coding for Chitin Synthase 1) and cora (coracle, coding for the Drosophila homolog of Protein 4.1), are not muscle-specific but expressed mainly in epidermal cells, indicating a function for mbl not only in muscles and the nervous system
A FRET-based assay for characterization of alternative splicing events using peptide nucleic acid fluorescence in situ hybridization
We describe a quantitative method for detecting RNA alternative splicing variants that combines in situ hybridization of fluorescently labeled peptide nucleic acid (PNA) probes with confocal microscopy Förster resonance energy transfer (FRET). The use of PNA probes complementary to sequences flanking a given splice junction allows to specifically quantify, within the cell, the RNA isoform generating such splice junction by FRET measure. As a proof of concept we analyzed two alternative splicing events originating from lymphocyte antigen 6 (LY6) complex, locus G5B (LY6G5B) pre-mRNA. These are characterized by the removal of the first intron (Fully Spliced Isoform, FSI) or by retention of such intron (Intron-Retained Isoform, IRI). The use of PNA probe pairs labeled with donor (Cy3) and acceptor (Cy5) fluorophores, suitable to FRET, flanking FSI and IRI specific splice junctions specifically detected both mRNA isoforms in HeLa cells. We have observed that the method works efficiently with probes 5–11 nt apart. The data supports that this FRET-based PNA fluorescence in situ hybridization (FP–FISH) method offers a conceptually new approach for characterizing at the subcellular level not only splice variant isoform structure, location and dynamics but also potentially a wide variety of close range RNA–RNA interactions
Soybean Nodule Autoregulation Receptor Kinase Phosphorylates Two Kinase-associated Protein Phosphatases in Vitro
The NARK (nodule autoregulation receptor kinase) gene, a negative regulator of cell proliferation in nodule primordia in several legumes, encodes a receptor kinase that consists of an extracellular leucine-rich repeat and an intracellular serine/threonine protein kinase domain. The putative catalytic domain of NARK was expressed and purified as a maltose-binding or a glutathione S-transferase fusion protein in Escherichia coli. The recombinant NARK proteins showed autophosphorylation activity in vitro. Several regions of the NARK kinase domain were shown by mass spectrometry to possess phosphoresidues. The kinase-inactive protein K724E failed to autophosphorylate, as did three other proteins corresponding to phenotypically detected mutants defective in whole plant autoregulation of nodulation. A wild-type NARK fusion protein transphosphorylated a kinase-inactive mutant NARK fusion protein, suggesting that it is capable of intermolecular autophosphorylation in vitro. In addition, Ser-861 and Thr-963 in the NARK kinase catalytic domain were identified as phosphorylation sites through site-directed mutagenesis. The genes coding for the kinase-associated protein phosphatases KAPP1 and KAPP2, two putative interacting components of NARK, were isolated. NARK kinase domain phosphorylated recombinant KAPP proteins in vitro. Autophosphorylated NARK kinase domain was, in turn, dephosphorylated by both KAPP1 and KAPP2. Our results suggest a model for signal transduction involving NARK in the control of nodule development
CLIPing the brain:studies of protein-RNA interactions important for neurodegenerative disorders
The fate of an mRNA is largely determined by its interactions with RNA binding proteins (RBPs). Post-transcriptional processing, RNA stability, localisation and translation are some of the events regulated by the plethora of RBPs present within cells. Mutations in various RBPs cause several diseases of the central nervous system, including frontotemporal lobar degeneration, amyotrophic lateral sclerosis and fragile X syndrome. Here we review the studies that integrated UV-induced cross-linked immunoprecipitation (CLIP) with other genome-wide methods to comprehensively characterise the function of diverse RBPs in the brain. We discuss the technical challenges of these studies and review the strategies that can be used to reliably identify the RNAs bound and regulated by an RBP. We conclude by highlighting how CLIP and related techniques have been instrumental in addressing the role of RBPs in neurologic diseases. This article is part of a Special Issue entitled: RNA and splicing regulation in neurodegeneration. © 2013
Organizational forms and welfare coalitions: corporate law and the movement for social insurance in the US and UK
- …
