62 research outputs found
Transmission Electron Microscopy of Platelets FROM Apheresis and Buffy-Coat-Derived Platelet Concentrates
Platelet concentrates are produced in order to treat bleeding disorders. They can be provided by apheresis machines or by pooling of buffy coats from four blood donations. During their manufacturing and storage, morphological alterations of platelets occur which can be demonstrated by transmission electron microscopy. Alterations range from slight and reversible changes, such as formation of small cell protrusions and swelling of the surface-connected open canalicular system, to severe structural changes, where platelets undergo transitions from discoid to ameboid shapes as a consequence of platelet activation. These alterations end in delivery of the contents of platelet granules as well as platelet involution caused by apoptosis and necrosis processes denoted as the platelet release reaction. Hereby, the involvement of the network of the open canalicular system, helping to deliver the contents of platelet granules into the surrounding milieu via pores, is distinctly shown by electron tomography. As a consequence of platelet activation, a delivery of differently sized microparticles takes place which is thought to play an important role in the adverse reactions in some recipients of platelet concentrates. In this article, the formation and delivery of platelet microparticles is illustrated by electron tomography. Above all, the ultrastructural features of platelets and megakaryocytes are discussed in the context of the molecular characteristics of the plasma membrane and organelles including the different granules and the expression of receptors engaged in signaling during platelet activation. Starting from the knowledge of the ultrastructure of resting and activated platelets, a score classification is presented, allowing the evaluation of different activation stages in a reproducible manner. Examples of evaluations of platelet concentrates using electron microscopy are briefly reviewed. In the last part, experiments showing the interaction of platelets with bacteria are presented. Using the tracer ruthenium red, for staining of the plasma membrane and the open canalicular system of platelets as well as the bacterial wall, the ability of platelets to adhere and sequestrate bacteria by formation of small aggregates, but also to incorporate them into compartments of the open canalicular system which are separated from the surrounding milieu, was shown. In conclusion, electron microscopy is an appropriate tool for the investigation of the quality of platelet concentrates. It can efficiently support results on the functional state of platelets obtained by other methods such as flow cytometry and aggregometry
Development of Myeloid Dendritic Cells under the Influence of Sexual Hormones Visualized using Scanning and Transmission Electron Microscopy
Dendritic cells (DCs) are antigen-presenting cells, which are mediated by MHC-class II molecules reacting with T-helper cells, eliciting a broad spectrum of immune reactions at cellular and humoral levels depending on their subtypes. DCs are also able to cross-present peptides from intracellular proteins as well as from intracellular pathogens via MHC-class I molecules by inducing MHC-class I–restricted cytotoxic T cells, which are also able to destroy cells undergoing malignant transformation. DCs originate from CD34+ hematopoietic stem cells but can also develop from monocytes. The local or systemic milieu of cytokines and steroid hormones significantly influences the generation of particular DC subtypes such as the classical myeloid DCs such as cDC1 and cDC2 as well as the plasmacytoid DCs. These subtypes are able to induce specific Th1- and Th17-dependent, Th2-dependent, or regulatory immune responses, respectively. Immature DCs take up extracellular pathogens that are presented by MHC molecules that are upregulated during maturation. Immature and mature DCs can be characterized by morphological and biochemical features that are outlined in this article. In addition, DCs are under control of sexual hormones. Estrogen receptor ligands are potent modulators of hemopoiesis and immune function in health and disease, influencing key cytokines promoting the maturation of DCs. DC differentiation is mainly regulated by binding of estradiol to ERα. Estrogen promotes the differentiation of immature DC subsets derived from bone marrow precursors or from myeloid progenitors. In contrast to estrogen, progesterone inhibits DC maturation, causing a decreased immunity in pregnancy or in postmenopausal women, where elevated levels of progesterone result in the production of Th2 cytokines. The influence of estrogen and progesterone on DC maturation has been demonstrated in own in vitro experiments using fluorescence microscopy and cell sorting and, above all, by visualization using SEM and TEM. At the end of this article, pits and falls concerning the treatment of malignancies with living DC vaccines are discussed
Author Correction:FMNL2 and -3 regulate Golgi architecture and anterograde transport downstream of Cdc42
High dose ionizing radiation regulates micro RNA and gene expression changes in human peripheral blood mononuclear cells
BACKGROUND: High dose ionizing radiation (IR) induces potent toxic cell effects mediated by either direct DNA damage or the production of reactive oxygen species (ROS). IR-induced modulations in multiple biological processes have been proposed to be partly regulated by radiosensitive microRNA (miRNA). In order to gain new insights into the role of miRNAs in the regulation of biological processes after IR, we have investigated changes in mRNA and miRNA expression after high dose IR. RESULTS: IR induced changes in the mRNA and miRNA profiles of human peripheral blood mononuclear cells (PBMCs). When comparing non-irradiated and irradiated samples, we detected a time-dependent increase in differentially expressed mRNAs and miRNAs, with the highest differences detectable 20 hours after exposure. Gene ontology analysis revealed that very early events (up to 4 hours) after irradiation were specifically associated with p53 signaling and apoptotic pathways, whereas a large number of diverse cellular processes were deregulated after 20 hours. Transcription factor analysis of all up-regulated genes confirmed the importance of p53 in the early post-irradiation phase. When analyzing miRNA expression, we found 177 miRNAs that were significantly regulated in the late post-irradiation phase. Integrating miRNA and target gene expression data, we found a significant negative correlation between miRNA-mRNA and identified hepatic leukemia factor (HLF) as a transcription factor down-regulated in the response to IR. These regulated miRNAs and the HLF target genes were involved in modulating radio-responsive pathways, such as apoptosis, the MAKP signaling pathway, endocytosis, and cytokine-cytokine interactions. CONCLUSION: Using a large dataset of mRNA and miRNA expression profiles, we describe the interplay of mRNAs and miRNAs in the regulation of gene expression in response to IR at a posttranscriptional level and their involvement in the modulation of radiation-induced biological pathways. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-814) contains supplementary material, which is available to authorized users
Retrograde traffic in the biosynthetic-secretory route
In the biosynthetic-secretory route from the rough endoplasmic reticulum, across the pre-Golgi intermediate compartments, the Golgi apparatus stacks, trans Golgi network, and post-Golgi organelles, anterograde transport is accompanied and counterbalanced by retrograde traffic of both membranes and contents. In the physiologic dynamics of cells, retrograde flow is necessary for retrieval of molecules that escaped from their compartments of function, for keeping the compartments’ balances, and maintenance of the functional integrities of organelles and compartments along the secretory route, for repeated use of molecules, and molecule repair. Internalized molecules may be transported in retrograde direction along certain sections of the secretory route, and compartments and machineries of the secretory pathway may be misused by toxins. An important example is the toxin of Shigella dysenteriae, which has been shown to travel from the cell surface across endosomes, and the Golgi apparatus en route to the endoplasmic reticulum, and the cytosol, where it exerts its deleterious effects. Most importantly in medical research, knowledge about the retrograde cellular pathways is increasingly being utilized for the development of strategies for targeted delivery of drugs to the interior of cells. Multiple details about the molecular transport machineries involved in retrograde traffic are known; a high number of the molecular constituents have been characterized, and the complicated fine structural architectures of the compartments involved become more and more visible. However, multiple contradictions exist, and already established traffic models again are in question by contradictory results obtained with diverse cell systems, and/or different techniques. Additional problems arise by the fact that the conditions used in the experimental protocols frequently do not reflect the physiologic situations of the cells. Regular and pathologic situations often are intermingled, and experimental treatments by themselves change cell organizations. This review addresses physiologic and pathologic situations, tries to correlate results obtained by different cell biologic techniques, and asks questions, which may be the basis and starting point for further investigations
Placental Alkaline Phosphatase Expression at the Apical and Basal Plasma Membrane in Term Villous Trophoblasts
Human placental alkaline phosphatase (PLAP) was localized at the apical and basal plasma membrane of syncytiotrophoblasts and at the surface of cytotrophoblasts in term chorionic villi using immunoelectron microscopy. Similarly, apical and basolateral PLAP expression was found in polarized trophoblast-derived BeWo cells. Trophoblasts isolated from term placentas exhibited mainly vesicular PLAP immunofluorescence staining immediately after isolation. After in vitro differentiation into syncytia, PLAP plasma membrane expression was upregulated and exceeded that observed in mononuclear trophoblasts. These data call for caution in using PLAP as a morphological marker to differentiate syncytiotrophoblasts from cytotrophoblasts or as a marker enzyme for placental brush-border membranes. (J Histochem Cytochem 49:1155–1164, 2001)</jats:p
- …
