2,228 research outputs found
Gas diffusivity and permeability through the firn column at Summit, Greenland: measurements and comparison to microstructural properties
The physical structure of polar firn plays a key role in the mechanisms by
which glaciers and ice sheets preserve a natural archive of past atmospheric
composition. This study presents the first measurements of gas diffusivity
and permeability along with microstructural information measured from the
near-surface firn through the firn column to pore close-off. Both fine- and
coarse-grained firn from Summit, Greenland are included in this study to
investigate the variability in firn caused by seasonal and storm-event
layering. Our measurements reveal that the porosity of firn (derived from
density) is insufficient to describe the full profiles of diffusivity and
permeability, particularly at porosity values above 0.5. Thus, even a model
that could perfectly predict the density profile would be insufficient for
application to issues involving gas transport. The measured diffusivity
profile presented here is compared to two diffusivity profiles modeled from
firn air measurements from Summit. Because of differences in scale and in
firn processes between the true field situation, firn modeling, and
laboratory measurements, the results follow a similar overall pattern but do
not align; our results constitute a lower bound on diffusive transport. In
comparing our measurements of both diffusivity and permeability to previous
parameterizations from numerical 3-D lattice-Boltzmann modeling, it is
evident that the previous relationships to porosity are likely site-specific.
We present parameterizations relating diffusivity and permeability to
porosity as a possible tool, though use of direct measurements would be far
more accurate when feasible. The relationships between gas transport
properties and microstructural properties are characterized and compared to
existing relationships for general porous media, specifically the
Katz–Thompson (KT), Kozeny–Carman (KC), and Archie's law approximations.
While those approximations can capture the general trend of gas transport
relationships, they result in high errors for individual samples and fail to
fully describe firn variability, particularly the differences between coarse-
and fine-grained firn. We present a direct power law relationship between
permeability and gas diffusivity based on our co-located measurements;
further research will indicate if this type of relationship is site-specific.
This set of measurements and relationships contributes a unique starting
point for future investigations in developing more physically based models of
firn gas transport
Dominance of grain size impacts on seasonal snow albedo at deforested sites in New Hampshire
Snow cover serves as a major control on the surface energy budget in temperate regions due to its high reflectivity compared to underlying surfaces. Winter in the northeastern United States has changed over the last several decades, resulting in shallower snowpacks, fewer days of snow cover, and increasing precipitation falling as rain in the winter. As these climatic changes occur, it is imperative that we understand current controls on the evolution of seasonal snow albedo in the region. Over three winter seasons between 2013 and 2015, snow characterization measurements were made at three open sites across New Hampshire. These near-daily measurements include spectral albedo, snow optical grain size determined through contact spectroscopy, snow depth, snow density, black carbon content, local meteorological parameters, and analysis of storm trajectories using the Hybrid Single-Particle Lagrangian Integrated Trajectory model. Using analysis of variance, we determine that land-based winter storms result in marginally higher albedo than coastal storms or storms from the Atlantic Ocean. Through multiple regression analysis, we determine that snow grain size is significantly more important in albedo reduction than black carbon content or snow density. And finally, we present a parameterization of albedo based on days since snowfall and temperature that accounts for 52% of variance in albedo over all three sites and years. Our improved understanding of current controls on snow albedo in the region will allow for better assessment of potential response of seasonal snow albedo and snow cover to changing climate
Oral health in relation to all-cause mortality: the IPC cohort study
We evaluated the association between oral health and mortality. The study population comprised 76,188 subjects aged 16–89 years at recruitment. The mean follow-up time was 3.4 ± 2.4 years. Subjects with a personal medical history of cancer or cardiovascular disease and death by casualty were excluded from the analysis. A full-mouth clinical examination was performed in order to assess dental plaque, dental calculus and gingival inflammation. The number of teeth and functional masticatory units 10 missing teeth and functional masticatory units 10 missing teeth (HR = 2.31, [95% CI: 1.40–3.82]) and functional masticatory units <5 (HR = 2.40 [95% CI 1.55–3.73]). Moreover, when ≥3 oral diseases were cumulated in the model, the risk increased for all-cause mortality (HR = 3.39, [95% CI: 2.51–5.42]), all-cancer mortality (HR = 3.59, [95% CI: 1.23–10.05]) and non-cardiovascular and non-cancer mortality (HR = 4.71, [95% CI: 1.74–12.7]). The present study indicates a postive linear association between oral health and mortality
Ionization dynamics in expanding clusters studied by XUV pump probe spectroscopy
he expansion and disintegration dynamics of xenon clusters initiated by the ionization with femtosecond soft x ray extreme ultraviolet XUV pulses were studied with pump probe spectroscopy using the autocorrelator setup of the Free Electron LASer in Hamburg FLASH facility. The ionization by the first XUV pulse of 92 eV photon energy 8 1012 W cm amp; 8722;2 leads to the generation of a large number of quasi free electrons trapped by the space charge of the cluster ions. A temporally delayed, more intense probe 4 1013 W cm amp; 8722;2 pulse substantially increases a population of nanoplasma electrons providing a way of probing plasma states in the expanding cluster by tracing the average charge of fragment ions. The results of the study reveal a timescale for cluster expansion and disintegration, which depends essentially on the initial cluster size. The average charge state of fragment ions, and thus the cluster plasma changes significantly on a timescale of 1 3 p
Imaging Molecular Structure through Femtosecond Photoelectron Diffraction on Aligned and Oriented Gas-Phase Molecules
This paper gives an account of our progress towards performing femtosecond
time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe
setup combining optical lasers and an X-ray Free-Electron Laser. We present
results of two experiments aimed at measuring photoelectron angular
distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and
dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss
them in the larger context of photoelectron diffraction on gas-phase molecules.
We also show how the strong nanosecond laser pulse used for adiabatically
laser-aligning the molecules influences the measured electron and ion spectra
and angular distributions, and discuss how this may affect the outcome of
future time-resolved photoelectron diffraction experiments.Comment: 24 pages, 10 figures, Faraday Discussions 17
A longer vernal window: The role of winter coldness and snowpack in driving spring thresholds and lags
Climate change is altering the timing and duration of the vernal window, a period that marks the end of winter and the start of the growing season when rapid transitions in ecosystem energy, water, nutrient, and carbon dynamics take place. Research on this period typically captures only a portion of the ecosystem in transition and focuses largely on the dates by which the system wakes up. Previous work has not addressed lags between transitions that represent delays in energy, water, nutrient, and carbon flows. The objectives of this study were to establish the sequence of physical and biogeochemical transitions and lags during the vernal window period and to understand how climate change may alter them. We synthesized observations from a statewide sensor network in New Hampshire, USA, that concurrently monitored climate, snow, soils, and streams over a three-year period and supplemented these observations with climate reanalysis data, snow data assimilation model output, and satellite spectral data. We found that some of the transitions that occurred within the vernal window were sequential, with air temperatures warming prior to snow melt, which preceded forest canopy closure. Other transitions were simultaneous with one another and had zero-length lags, such as snowpack disappearance, rapid soil warming, and peak stream discharge. We modeled lags as a function of both winter coldness and snow depth, both of which are expected to decline with climate change. Warmer winters with less snow resulted in longer lags and a more protracted vernal window. This lengthening of individual lags and of the entire vernal window carries important consequences for the thermodynamics and biogeochemistry of ecosystems, both during the winter-to-spring transition and throughout the rest of the year
Altered Tendon Characteristics and Mechanical Properties Associated with Insertional Achilles Tendinopathy
Study Design: Case-control laboratory study.
Objectives: To compare tendon characteristics (shape, composition) and mechanical properties (strain, stiffness) on the involved side of participants with insertional Achilles tendinopathy (IAT) to the uninvolved side and to controls, and to examine if severity of tendon pathology is associated with severity of symptoms during function.
Background: Despite the severity and chronicity of IAT, the quality of theoretical evidence available to guide the development of exercise interventions is low. While tendon pathology of midportion Achilles tendinopathy has been described, there are few studies specific to IAT.
Methods: Twenty individuals with unilateral IAT and 20 age- and sex-matched controls volunteered to participate. Ultrasound imaging was used to quantify changes in tendon shape (diameter) and composition (echogenicity). A combination of ultrasound and dynamometry was used to measure tendon mechanical properties (strain and stiffness) during passive ankle rotation toward dorsiflexion. Generalized estimating equations were used to examine the association between IAT, alterations in tendon properties, and participant demographics. Pearson correlation was used to examine the association between severity of tendon pathology and severity of symptoms (Victorian Institute of Sport Assessment-Achilles).
Results: The side with IAT had a larger tendon diameter (P
Conclusion: Ultrasound imaging combined with dynamometry can discriminate alterations in tendon shape, composition, and mechanics in participants with IAT. Future clinical trials for IAT may consider strategies to alter tendon characteristics and restore tendon mechanic
Cross-sectional associations between sleep duration, sedentary time, physical activity, and adiposity indicators among Canadian preschool-aged children using compositional analyses
Abstract Background Sleep duration, sedentary behaviour, and physical activity are three co-dependent behaviours that fall on the movement/non-movement intensity continuum. Compositional data analyses provide an appropriate method for analyzing the association between co-dependent movement behaviour data and health indicators. The objectives of this study were to examine: (1) the combined associations of the composition of time spent in sleep, sedentary behaviour, light-intensity physical activity (LPA), and moderate- to vigorous-intensity physical activity (MVPA) with adiposity indicators; and (2) the association of the time spent in sleep, sedentary behaviour, LPA, or MVPA with adiposity indicators relative to the time spent in the other behaviours in a representative sample of Canadian preschool-aged children. Methods Participants were 552 children aged 3 to 4 years from cycles 2 and 3 of the Canadian Health Measures Survey. Sedentary time, LPA, and MVPA were measured with Actical accelerometers (Philips Respironics, Bend, OR USA), and sleep duration was parental reported. Adiposity indicators included waist circumference (WC) and body mass index (BMI) z-scores based on World Health Organization growth standards. Compositional data analyses were used to examine the cross-sectional associations. Results The composition of movement behaviours was significantly associated with BMI z-scores (p = 0.006) but not with WC (p = 0.718). Further, the time spent in sleep (BMI z-score: γ sleep = −0.72; p = 0.138; WC: γ sleep = −1.95; p = 0.285), sedentary behaviour (BMI z-score: γ SB = 0.19; p = 0.624; WC: γ SB = 0.87; p = 0.614), LPA (BMI z-score: γ LPA = 0.62; p = 0.213, WC: γ LPA = 0.23; p = 0.902), or MVPA (BMI z-score: γ MVPA = −0.09; p = 0.733, WC: γ MVPA = 0.08; p = 0.288) relative to the other behaviours was not significantly associated with the adiposity indicators. Conclusions This study is the first to use compositional analyses when examining associations of co-dependent sleep duration, sedentary time, and physical activity behaviours with adiposity indicators in preschool-aged children. The overall composition of movement behaviours appears important for healthy BMI z-scores in preschool-aged children. Future research is needed to determine the optimal movement behaviour composition that should be promoted in this age group
Measurement of the slope parameter with the KLOE detector
We present a measurement of the slope parameter for the decay, with the KLOE experiment at the DANE -factory,
based on a background free sample of 17 millions mesons produced
in radiative decays. By fitting the event density in the Dalitz plot we
determine .
The result is in agreement with recent measurements from hadro- and
photo-production experiments.Comment: 14 pages, 11 figure
Calculation of valence electron momentum densities using the projector augmented-wave method
We present valence electron Compton profiles calculated within the
density-functional theory using the all-electron full-potential projector
augmented-wave method (PAW). Our results for covalent (Si), metallic (Li, Al)
and hydrogen-bonded ((H_2O)_2) systems agree well with experiments and
computational results obtained with other band-structure and basis set schemes.
The PAW basis set describes the high-momentum Fourier components of the valence
wave functions accurately when compared with other basis set schemes and
previous all-electron calculations.Comment: Submitted to Journal of Physics and Chemistry of Solids on September
17 2004. Revised version submitted on December 13 200
- …
