103 research outputs found
Recommended from our members
The Communication Complexity of Atomic Commitment and of Gossiping
We consider the problem of atomic commitment of a transaction in a distributed database. This is a variant of the famous gossiping problem (see [HHL] for a survey). Given a set of communication costs between pairs of participant sites, we establish that the necessary communication cost for any atomic commitment algorithm is twice the cost of a certain minimum spanning tree. We also establish the necessary communication time for any atomic commitment algorithm, given a set of communication delays between pairs of participant sites, and the time at which each participant completes its subtransaction. Then we determine that both lower bounds are also upper bounds in the following sense. There is an efficient (i.e. polynomial-time) algorithm that, in the absence of failures, has a minimum communication cost. There is another efficient algorithm that, in the absence of failures, has a minimum communication time. However, unless P=NP, there is no efficient algorithm which has a minimum communication complexity, namely, for which the product of communication cost and communication time is minimum. Then we present a simple, linear time, distributed algorithm, called TREE-COMMIT, whose communication complexity is not worse than p times the minimum complexity, where p is the number of participants. Finally, we demonstrate that TREE-COMMIT is superior to the existing variants of the two-phase commit protocol
Educating end-stage renal disease patients on dialysis modality selection: a clinical advice from the European Renal Best Practice (ERBP) advisory board
status: publishe
Logarithmic Growth of Dikes From a Depressurizing Magma Chamber
Dike propagation is an intrinsically multiphase problem, where deformation and fluid flow are intricately coupled in a fracture process. Here we perform the first fully coupled simulations of dike propagation in two dimensions, accounting for depressurization of a circular magma chamber, dynamic fluid flow, fracture formation, and elastic deformation. Despite the complexity of the governing equations, we observe that the lengthening is well explained by a simple model a(t) = c₁ log(1 + t/c₂), where is the dike length, is time, and c₁ and c₂ are constants. We compare the model to seismic data from eight dikes in Iceland and Ethiopia, and, in spite of the assumption of plane strain, we find good agreement between the data and the model. In addition, we derive an approximate model for the depressurization of the chamber with the dike length. These models may help forecast the growth of lateral dikes and magma chamber depressurization
A model-based assay design to reproduce in vivo patterns of acute drug-induced toxicity
For more than a decade pharmaceutical R&D has been hampered by considerable attrition rates during clinical trials. The main reasons for drug failure is related to the lack of efficacy, limitations with respect to ADME (absorption, distribution, metabolism and excretion) properties, and—in approximately 30% of the cases—unforeseen toxicity (Kola and Landis 2004). The majority of adverse drug reactions observed in the clinical phase refer to organ injuries, e.g. of the cardiovascular system, the liver, the central nervous system and skeletal muscle (Cook et al. 2014). This clearly demonstrates the limited predictive accuracy of current preclinical models such as the rodent bioassay in evaluating repeated dose toxicity for predicting human toxic risks. It has been argued that overall, only 43% of toxic effects in humans may be correctly predicted by applying rodent-based safety evaluation protocols due to the fact that these assays tend to generate relatively large numbers of false negative as well as false positive read outs (Hartung 2009)
- …
