120 research outputs found

    Asymptotic expansion of the multi-orientable random tensor model

    Full text link
    Three-dimensional random tensor models are a natural generalization of the celebrated matrix models. The associated tensor graphs, or 3D maps, can be classified with respect to a particular integer or half-integer, the degree of the respective graph. In this paper we analyze the general term of the asymptotic expansion in N, the size of the tensor, of a particular random tensor model, the multi-orientable tensor model. We perform their enumeration and we establish which are the dominant configurations of a given degree.Comment: 27 pages, 24 figures, several minor modifications have been made, one figure has been added; accepted for publication in "Electronic Journal of Combinatorics

    The Multi-Orientable Random Tensor Model, a Review

    Full text link
    After its introduction (initially within a group field theory framework) in [Tanasa A., J. Phys. A: Math. Theor. 45 (2012), 165401, 19 pages, arXiv:1109.0694], the multi-orientable (MO) tensor model grew over the last years into a solid alternative of the celebrated colored (and colored-like) random tensor model. In this paper we review the most important results of the study of this MO model: the implementation of the 1/N1/N expansion and of the large NN limit (NN being the size of the tensor), the combinatorial analysis of the various terms of this expansion and finally, the recent implementation of a double scaling limit

    Combinatorial Hopf algebraic description of the multiscale renormalization in quantum field theory

    Full text link
    We define in this paper several Hopf algebras describing the combinatorics of the so-called multi-scale renormalization in quantum field theory. After a brief recall of the main mathematical features of multi-scale renormalization, we define assigned graphs, that are graphs with appropriate decorations for the multi-scale framework. We then define Hopf algebras on these assigned graphs and on the Gallavotti-Nicol\`o trees, particular class of trees encoding the supplementary informations of the assigned graphs. Several morphisms between these combinatorial Hopf algebras and the Connes-Kreimer algebra are given. Finally, scale dependent couplings are analyzed via this combinatorial algebraic setting.Comment: 26 pages, 3 figures; the presentation of the results has been reorganized. Several details of various proofs are given and some references have been adde
    corecore