334 research outputs found
Spin-orbit splitting and the tensor component of the Skyrme interaction
We study the role of the tensor term of the Skyrme effective interactions on
the spin-orbit splittings in the N=82 isotones and Z=50 isotopes. The different
role of the triplet-even and triplet-odd tensor forces is pointed out by
analyzing the spin-orbit splittings in these nuclei. The experimental isospin
dependence of these splittings cannot be described by Hartree-Fock calculations
employing the usual Skyrme parametrizations, but is very well accounted for
when the tensor interaction is introduced. The capability of the Skyrme forces
to reproduce binding energies and charge radii in heavy nuclei is not destroyed
by the introduction of the tensor term. Finally, we also discuss the effect of
the tensor force on the centroid of the Gamow-Teller states.Comment: Submitted to Phys. Lett.
Reconstruction of nuclear charged fragment trajectories from a large gap sweeper magnet
A new method to reconstruct charged fragment four-momentum vectors from
measured trajectories behind an open, large gap, magnetic dispersion element (a
sweeper magnet) has been developed. In addition to the position and angle
behind the magnet it includes the position measurement in the dispersive
direction at the target. The method improves the energy and angle resolution of
the reconstruction significantly for experiments with fast rare isotopes, where
the beam size at the target position is large.Comment: 13 pages, 5 figures, accepted for publication in Nucl. Instrum. Meth.
Excitation of Pygmy Dipole Resonance in neutron-rich nuclei via Coulomb and nuclear fields
We study the nature of the low-lying dipole strength in neutron-rich nuclei,
often associated to the Pygmy Dipole Resonance. The states are described within
the Hartree-Fock plus RPA formalism, using different parametrizations of the
Skyrme interaction. We show how the information from combined reactions
processes involving the Coulomb and different mixtures of isoscalar and
isovector nuclear interactions can provide a clue to reveal the characteristic
features of these states.Comment: 9 Pages, 8 figures, contribution to International Symposium On
Nuclear Physics, December 8-12, 2009,Bhabha Atomic Research Centre, Mumbai,
Indi
Low-lying dipole response in the Relativistic Quasiparticle Time Blocking Approximation and its influence on neutron capture cross sections
We have computed dipole strength distributions for nickel and tin isotopes
within the Relativistic Quasiparticle Time Blocking approximation (RQTBA).
These calculations provide a good description of data, including the
neutron-rich tin isotopes Sn. The resulting dipole strengths have
been implemented in Hauser-Feshbach calculations of astrophysical neutron
capture rates relevant for r-process nucleosynthesis studies. The RQTBA
calculations show the presence of enhanced dipole strength at energies around
the neutron threshold for neutron rich nuclei. The computed neutron capture
rates are sensitive to the fine structure of the low lying dipole strength,
which emphasizes the importance of a reliable knowledge of this excitation
mode.Comment: 15 pages, 4 figures, Accepted in Nucl. Phys.
Shape and structure of N=Z 64Ge; Electromagnetic transition rates from the application of the Recoil Distance Method to knock-out reaction
Transition rate measurements are reported for the first and the second 2+
states in N=Z 64Ge. The experimental results are in excellent agreement with
large-scale Shell Model calculations applying the recently developed GXPF1A
interactions. Theoretical analysis suggests that 64Ge is a collective
gamma-soft anharmonic vibrator. The measurement was done using the Recoil
Distance Method (RDM) and a unique combination of state-of-the-art instruments
at the National Superconducting Cyclotron Laboratory (NSCL). States of interest
were populated via an intermediate-energy single-neutron knock-out reaction.
RDM studies of knock-out and fragmentation reaction products hold the promise
of reaching far from stability and providing lifetime information for excited
states in a wide range of nuclei
Self-consistent calculations within the Extended Theory of Finite Fermi Systems
The Extended Theory of Finite Fermi Systems(ETFFS) describes nuclear
excitations considering phonons and pairing degrees of freedom, using
experimental single particle energies and the effective Landau-Migdal
interaction. Here we use the Skyrme interactions in order to extend the range
of applicability of the ETFFS to experimentally not yet investigated
short-lived isotopes. We find that Skyrme interactions which reproduce at the
mean field level both ground state properties and nuclear excitations are able
to describe the spreading widths of the giant resonances in the new approach,
but produce shifts of the centroid energies. A renormalization of the Skyrme
interactions is required for approaches going beyond the mean field level.Comment: 7 pages, 5 figures, corrected typo
Demonstration of radon removal from SF6 using molecular sieves
The gas SF6 has become of interest as a negative ion drift gas for use in directional
dark matter searches. However, as for other targets in such searches, it is important that radon
contamination can be removed as this provides a source of unwanted background events. In this
work we demonstrate for the first time filtration of radon from SF6 gas by using a molecular
sieve. Four types of sieves from Sigma-Aldrich were investigated, namely 3Å, 4Å, 5Å and 13X.
A manufactured radon source was used for the tests. This was attached to a closed loop system in
which gas was flowed through the filters and a specially adapted Durridge RAD7 radon detector.
In these measurements, it was found that only the 5Å type was able to significantly reduce the
radon concentration without absorbing the SF6 gas. The sieve was able to reduce the initial radon
concentration of 3875 ± 13 Bqm−3
in SF6 gas by 87% when cooled with dry ice. The ability of
the cooled 5Å molecular sieve filter to significantly reduce radon concentration from SF6 provides
a promising foundation for the construction of a radon filtration setup for future ultra-sensitive SF6
gas rare-event physics experiments
- …
