48 research outputs found
Agroecosystem management and biotic interactions: a review
Increasing the use of synthetic fertilisers and pesticides in agroecosystems has led to higher crop yields, accompanied by a decline in biodiversity at the levels of field, cropping system and farm. Biodiversity decline has been favoured by changes at landscape level such as regional farm specialisation, increases in field size, and the removal of hedgerows and woodlots. The loss of biodiversity in agroecosystems has increased the need for external inputs because beneficial functions are no longer provided by beneficial species as natural enemies of crop pests and ecosystem engineers. This trend has led to a strong reliance on petrochemicals in agroecosystems. However, many scientists have been arguing for more than two decades that this reliance on petrochemicals could be considerably reduced by a better use of biotic interactions. This article reviewsoptions to increase beneficial biotic interactions in agroecosystems and to improve pest management and crop nutrition whilst decreasing petrochemical use. Four agronomic options are presented. First, it has been shown that the choice of cultivar, the sowing date and nitrogen fertilisation practices can be manipulated to prevent interactions between pests and crop, in either time or space. Nevertheless, the efficacy of these manipulations may be limited by pest adaptation. Second, beneficial biotic interactions may result from appropriate changes to the habitats of natural enemies and ecosystem engineers, mediated by soil and weed management. Here, knowledge is scarce, and indirect and complex effects are poorly understood. Third, changes achieved by crop diversification and, fourth, by landscape adaptation are promising. However, these practices also present drawbacks that may not necessarily be outweighed by beneficial effects. Overall, these four management approaches provide a powerful framework to develop sustainable agronomic practices
Crop pests and predators exhibit inconsistent responses to surrounding landscape composition
This is the final version of the article. Available from National Academy of Sciences via the DOI in this recordThe idea that noncrop habitat enhances pest control and represents a win–win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win–win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies.This work was supported through the National Socio-Environmental Synthesis Center (SESYNC)—National Science Foundation Award DBI-1052875 for the project “Evidence and Decision-Support Tools for Controlling Agricultural Pests with Conservation Interventions” organized by D.S.K. and R.C.-K
Convection in the primitive mantle in interaction with global magma oceans
Un scénario couramment considéré lors de la formation des planètes telluriques est celui des océans de magma. L'énergie d’accrétion ainsi que celle dégagée par la désintégration d’éléments radioactifs de courtes périodes est en effet largement suffisante pour fondre une large portion voire l'entièreté du manteau terrestre, formant dans ce dernier cas un océan de magma global. La dépendance en pression de la température de solidification et le fort gradient du profil isentropique dans le manteau inférieur peut ammener à une cristallisation decet océan de magma global par le milieu. Ceci conduit à une situation où la partie solide du manteau primitif est encadrée par deux océans de magma globaux : un en surface, et un basal. Cette thèse se focalise sur deux aspects scientifiques d'un tel système. D'une part, les océans de magma ayant une composition similaire à celle du solide, la matière en convection dans le solide n'est pas nécessairement arrêtée à l'interface entre le solide et le liquide mais peut la traverser par fusion/cristallisation si le temps de changement de phase est court devant le temps de construction de topographie du solide au sein du liquide par force visqueuse. Une analyse de stabilité linéaire ainsi que des simulations numériques directes montrent que cette possibilité de changement de phase affecte considérablement la convection dans la partie solide. Le nombre de Rayleigh critique est abaissé, les structures convectives ont une plus grande longeur d'onde, et le flux de chaleur transporté à travers la couche solide peut être de plusieurs ordres de grandeurs plus important qu'avec des conditions aux limites classiques. Le deuxième aspect étudié durant cette thèse est celui de l'évolution à long terme du manteau primitif. En couplant le modèle de convection dans le solide avec des modèles simples d'évolution des océans de magma, nous avons construit un modèle d'évolution global du manteau primitif en suivant l'évolution thermo-compositionelle des océans de magma globaux et de la partie solide. Une analyse de stabilité linéaire montre que la convection dans la partie solide démarre avant même que l'océan de magma en surface soit entièrement cristallisé. Une simulation numérique directe préliminaire montre que la cristallisation fractionnée de l’océan de magma basal peut conduire à la formation de larges piles thermochimiques en base du manteau solide, similaires aux structures de faibles vitesses sismiques (LLSVP) observées de nos jours. La présence d'océans de magma globaux peut donc avoir d'importantes répercussions sur l'évolution à long terme de la Terre : d'une part via les structures thermiques et compositionnelles mises en place par la cristallisation fractionnée des océans et la convection dans le solide ; d'autre part, le bilan énergétique global peut être considérablement affecté par le fort flux de chaleur extrait par le manteau solide du fait des conditions de changement de phase.A common scenario considered during the formation of Earth-like bodies is that of magma oceans. Indeed, the accretion energy as well as the heat produced by the radioactive decay of short-period elements is more than enough to melt entirely the primitive mantle, thereby forming a global magma ocean. The pressure-dependence of the solidification temperature as well as the steep isentropic temperature profile at the base of the mantle could lead to a crystallization of that global magma ocean from the middle. The primitive solid mantle could therefore be bounded by two global magma oceans: one above and one below.This PhD thesis focuses on two aspects of such a system. First, the solid part of the mantle and the magma oceans being of similar composition, convecting matter in the solid is not necessarily stopped by the solid/liquid interface but could instead go through it by melting/freezing provided that the phase change timescale is short enough compared to the viscous timescale needed to build a solid topography in the liquid oceans. A linear stability analysis and direct numerical simulations show the phase change at the boundary greatly affects convection in the solid part of the mantle. The critical Rayleigh number decreases, convective patterns have a larger wavelength, and the heat flux carried through the solid increases of up to several orders of magnitude compared to cases with classical boundary conditions.The second aspect explored in this thesis is the long-term evolution of the primitive mantle. Coupling convection in the solid with simple evolution models for the magma oceans allowed us to build a global evolution model of the primitive mantle monitoring the thermo-compositional evolution of the solid mantle and magma oceans. A linear stability analysis shows convection sets in the solid before the surface magma ocean crystallizes entirely. A preliminary direct numerical simulation shows the fractional crystallization of the basal magma ocean may lead to the formation of large thermo-chemical piles at the base of the solid mantle. These piles are similar to the large low-shear velocity provinces (LLSVP) observed today.The presence of global magma oceans could therefore have important consequences on the long-term evolution of the Earth: first, fractional crystallization of the magma oceans and convection in the solid part affect the resulting thermal and compositional structures; and second, the global heat budget could be tremendously affected by the high heat flux carried out by the solid part owing to the phase change boundary conditions
Convection dans le manteau primitif en interaction avec des océans de magma globaux
A common scenario considered during the formation of Earth-like bodies is that of magma oceans. Indeed, the accretion energy as well as the heat produced by the radioactive decay of short-period elements is more than enough to melt entirely the primitive mantle, thereby forming a global magma ocean. The pressure-dependence of the solidification temperature as well as the steep isentropic temperature profile at the base of the mantle could lead to a crystallization of that global magma ocean from the middle. The primitive solid mantle could therefore be bounded by two global magma oceans: one above and one below.This PhD thesis focuses on two aspects of such a system. First, the solid part of the mantle and the magma oceans being of similar composition, convecting matter in the solid is not necessarily stopped by the solid/liquid interface but could instead go through it by melting/freezing provided that the phase change timescale is short enough compared to the viscous timescale needed to build a solid topography in the liquid oceans. A linear stability analysis and direct numerical simulations show the phase change at the boundary greatly affects convection in the solid part of the mantle. The critical Rayleigh number decreases, convective patterns have a larger wavelength, and the heat flux carried through the solid increases of up to several orders of magnitude compared to cases with classical boundary conditions.The second aspect explored in this thesis is the long-term evolution of the primitive mantle. Coupling convection in the solid with simple evolution models for the magma oceans allowed us to build a global evolution model of the primitive mantle monitoring the thermo-compositional evolution of the solid mantle and magma oceans. A linear stability analysis shows convection sets in the solid before the surface magma ocean crystallizes entirely. A preliminary direct numerical simulation shows the fractional crystallization of the basal magma ocean may lead to the formation of large thermo-chemical piles at the base of the solid mantle. These piles are similar to the large low-shear velocity provinces (LLSVP) observed today.The presence of global magma oceans could therefore have important consequences on the long-term evolution of the Earth: first, fractional crystallization of the magma oceans and convection in the solid part affect the resulting thermal and compositional structures; and second, the global heat budget could be tremendously affected by the high heat flux carried out by the solid part owing to the phase change boundary conditions.Un scénario couramment considéré lors de la formation des planètes telluriques est celui des océans de magma. L'énergie d’accrétion ainsi que celle dégagée par la désintégration d’éléments radioactifs de courtes périodes est en effet largement suffisante pour fondre une large portion voire l'entièreté du manteau terrestre, formant dans ce dernier cas un océan de magma global. La dépendance en pression de la température de solidification et le fort gradient du profil isentropique dans le manteau inférieur peut ammener à une cristallisation decet océan de magma global par le milieu. Ceci conduit à une situation où la partie solide du manteau primitif est encadrée par deux océans de magma globaux : un en surface, et un basal. Cette thèse se focalise sur deux aspects scientifiques d'un tel système. D'une part, les océans de magma ayant une composition similaire à celle du solide, la matière en convection dans le solide n'est pas nécessairement arrêtée à l'interface entre le solide et le liquide mais peut la traverser par fusion/cristallisation si le temps de changement de phase est court devant le temps de construction de topographie du solide au sein du liquide par force visqueuse. Une analyse de stabilité linéaire ainsi que des simulations numériques directes montrent que cette possibilité de changement de phase affecte considérablement la convection dans la partie solide. Le nombre de Rayleigh critique est abaissé, les structures convectives ont une plus grande longeur d'onde, et le flux de chaleur transporté à travers la couche solide peut être de plusieurs ordres de grandeurs plus important qu'avec des conditions aux limites classiques. Le deuxième aspect étudié durant cette thèse est celui de l'évolution à long terme du manteau primitif. En couplant le modèle de convection dans le solide avec des modèles simples d'évolution des océans de magma, nous avons construit un modèle d'évolution global du manteau primitif en suivant l'évolution thermo-compositionelle des océans de magma globaux et de la partie solide. Une analyse de stabilité linéaire montre que la convection dans la partie solide démarre avant même que l'océan de magma en surface soit entièrement cristallisé. Une simulation numérique directe préliminaire montre que la cristallisation fractionnée de l’océan de magma basal peut conduire à la formation de larges piles thermochimiques en base du manteau solide, similaires aux structures de faibles vitesses sismiques (LLSVP) observées de nos jours. La présence d'océans de magma globaux peut donc avoir d'importantes répercussions sur l'évolution à long terme de la Terre : d'une part via les structures thermiques et compositionnelles mises en place par la cristallisation fractionnée des océans et la convection dans le solide ; d'autre part, le bilan énergétique global peut être considérablement affecté par le fort flux de chaleur extrait par le manteau solide du fait des conditions de changement de phase
Sublimation-driven convection in Sputnik Planitia on Pluto
International audienceSputnik Planitia is a nitrogen-ice-filled basin on Pluto1. Its polygonal surface patterns2 have been previously explained as a result of solid-state convection with either an imposed heat flow3 or a temperature difference within the 10-km-thick ice layer4. Neither explanation is satisfactory, because they do not exhibit surface topography with the observed pattern: flat polygons delimited by narrow troughs5. Internal heating produces the observed patterns6, but the heating source in such a setup remains enigmatic. Here we report the results of modelling the effects of sublimation at the surface. We find that sublimation-driven convection readily produces the observed polygonal structures if we assume a smaller heat flux (~0.3 mW m−2) at the base of the ice layer than the commonly accepted value of 2-3 mW m−2 (ref. 7). Sustaining this regime with the latter value is also possible, but would require a stronger viscosity contrast (~3,000) than the nominal value (~100) considered in this study
Solid-state mantle convection coupled with a crystallising basal magma ocean
International audienceFractional crystallisation of a basal magma ocean (BMO) has been proposed to explain the formation of large scale compositional variations in the mantle and the persistence of partially molten patches in the lowermost mantle. We present a complete set of equations for the thermal and compositional evolution of the BMO and show that it can be implemented in a mantle convection code to solve the long term mantle evolution problem. The presence of the BMO modifies the dynamics of the mantle in several ways. The phase equilibrium at the bottom of the solid mantle implies a change of mechanical boundary condition, which helps solid state convection. The net freezing of the BMO implies a change of computational domain, which is treated by mapping the radial coordinate on a constant thickness domain. Fractional melting and freezing at the boundary makes the composition of the BMO and the solid mantle evolve, which is treated using Lagrangian tracers. A sample calculation shows that the persistence of the BMO and its long term evolution drastically changes the dynamics of the solid mantle by promoting downwelling currents and large scale flow. The gradual increase of the FeO content in the BMO and in the solid that crystallises from it leads to the stabilisation of large scale thermo-compositional piles at the bottom of the mantle, possibly explaining the observations from seismology.La cristallisation fractionnée d’un océan de magma basal (OMB) a été proposée pour expliquer la formation de variations de composition à grande échelle dans le manteau et la persistance de zones partiellement fondues à la base du manteau inférieur. Nous présentons un ensemble complet d’équations pour l’évolution thermique et compositionnelle de l’OMB et montrons qu’il peut être implémenté dans un code de convection du manteau pour résoudre le problème de l’évolution du manteau à long terme. La présence de l’OMB modifie la dynamique du manteau de plusieurs façons. L’équilibre de phase à la base du manteau solide implique un changement des conditions limites mécaniques, ce qui favorise la convection à l’état solide. La cristallisation nette de l’OMB implique un changement de domaine de calcul, qui est traité en utilisant un changement de variable pour la coordonnée radiale pour garder une épaisseur constante. La fusion et la cristallisation fractionnés à la frontière font évoluer la composition de l’OMB et du manteau solide, ce qui est traité à l’aide de traceurs lagrangiens. Un exemple de calcul montre que la persistance de l’OMB et son évolution à long terme modifient radicalement la dynamique du manteau solide en favorisant les courants descendant focalisés et les écoulements à grande échelle. L’augmentation progressive de la teneur en FeO dans l’OMB et dans le solide qui cristallise à partir de celui-ci conduit à la stabilisation de piles thermo-compositionnelles à grande échelle en base de manteau, ce qui pourrait expliquer les observations sismologiques
