13 research outputs found
Cartoon Computation: Quantum-like computing without quantum mechanics
We present a computational framework based on geometric structures. No
quantum mechanics is involved, and yet the algorithms perform tasks analogous
to quantum computation. Tensor products and entangled states are not needed --
they are replaced by sets of basic shapes. To test the formalism we solve in
geometric terms the Deutsch-Jozsa problem, historically the first example that
demonstrated the potential power of quantum computation. Each step of the
algorithm has a clear geometric interpetation and allows for a cartoon
representation.Comment: version accepted in J. Phys.A (Letter to the Editor
Geometric Algebra Model of Distributed Representations
Formalism based on GA is an alternative to distributed representation models
developed so far --- Smolensky's tensor product, Holographic Reduced
Representations (HRR) and Binary Spatter Code (BSC). Convolutions are replaced
by geometric products, interpretable in terms of geometry which seems to be the
most natural language for visualization of higher concepts. This paper recalls
the main ideas behind the GA model and investigates recognition test results
using both inner product and a clipped version of matrix representation. The
influence of accidental blade equality on recognition is also studied. Finally,
the efficiency of the GA model is compared to that of previously developed
models.Comment: 30 pages, 19 figure
On classical models of spin
The reason for recalling this old paper is the ongoing discussion on the
attempts of circumventing certain assumptions leading to the Bell theorem
(Hess-Philipp, Accardi). If I correctly understand the intentions of these
Authors, the idea is to make use of the following logical loophole inherent in
the proof of the Bell theorem: Probabilities of counterfactual events A and A'
do not have to coincide with actually measured probabilities if measurements of
A and A' disturb each other, or for any other fundamental reason cannot be
performed simulaneously. It is generally believed that in the context of
classical probability theory (i.e. realistic hidden variables) probabilities of
counterfactual events can be identified with those of actually measured events.
In the paper I give an explicit counterexample to this belief. The "first
variation" on the Aerts model shows that counterfactual and actual problems
formulated for the same classical system may be unrelated. In the model the
first probability does not violate any classical inequality whereas the second
does. Pecularity of the Bell inequality is that on the basis of an in principle
unobservable probability one derives probabilities of jointly measurable random
variables, the fact additionally obscuring the logical meaning of the
construction. The existence of the loophole does not change the fact that I was
not able to construct a local model violating the inequality with all the other
loopholes eliminated.Comment: published as Found. Phys. Lett. 3 (1992) 24
Quantum Aspects of Semantic Analysis and Symbolic Artificial Intelligence
Modern approaches to semanic analysis if reformulated as Hilbert-space
problems reveal formal structures known from quantum mechanics. Similar
situation is found in distributed representations of cognitive structures
developed for the purposes of neural networks. We take a closer look at
similarites and differences between the above two fields and quantum
information theory.Comment: version accepted in J. Phys. A (Letter to the Editor
Hidden measurements, hidden variables and the volume representation of transition probabilities
We construct, for any finite dimension , a new hidden measurement model
for quantum mechanics based on representing quantum transition probabilities by
the volume of regions in projective Hilbert space. For our model is
equivalent to the Aerts sphere model and serves as a generalization of it for
dimensions . We also show how to construct a hidden variables scheme
based on hidden measurements and we discuss how joint distributions arise in
our hidden variables scheme and their relationship with the results of Fine.Comment: 23 pages, 1 figur
Teleportation of geometric structures in 3D
Simplest quantum teleportation algorithms can be represented in geometric
terms in spaces of dimensions 3 (for real state-vectors) and 4 (for complex
state-vectors). The geometric representation is based on geometric-algebra
coding, a geometric alternative to the tensor-product coding typical of quantum
mechanics. We discuss all the elementary ingredients of the geometric version
of the algorithm: Geometric analogs of states and controlled Pauli gates. Fully
geometric presentation is possible if one employs a nonstandard representation
of directed magnitudes, formulated in terms of colors defined via stereographic
projection of a color wheel, and not by means of directed volumes.Comment: typos corrected, one plot remove
