2,327 research outputs found
An implementation of Deflate in Coq
The widely-used compression format "Deflate" is defined in RFC 1951 and is
based on prefix-free codings and backreferences. There are unclear points about
the way these codings are specified, and several sources for confusion in the
standard. We tried to fix this problem by giving a rigorous mathematical
specification, which we formalized in Coq. We produced a verified
implementation in Coq which achieves competitive performance on inputs of
several megabytes. In this paper we present the several parts of our
implementation: a fully verified implementation of canonical prefix-free
codings, which can be used in other compression formats as well, and an elegant
formalism for specifying sophisticated formats, which we used to implement both
a compression and decompression algorithm in Coq which we formally prove
inverse to each other -- the first time this has been achieved to our
knowledge. The compatibility to other Deflate implementations can be shown
empirically. We furthermore discuss some of the difficulties, specifically
regarding memory and runtime requirements, and our approaches to overcome them
Phase Control of Squeezed Vacuum States of Light in Gravitational Wave Detectors
Quantum noise will be the dominant noise source for the advanced laser
interferometric gravitational wave detectors currently under construction.
Squeezing-enhanced laser interferometers have been recently demonstrated as a
viable technique to reduce quantum noise. We propose two new methods of
generating an error signal for matching the longitudinal phase of squeezed
vacuum states of light to the phase of the laser interferometer output field.
Both provide a superior signal to the one used in previous demonstrations of
squeezing applied to a gravitational-wave detector. We demonstrate that the new
signals are less sensitive to misalignments and higher order modes, and result
in an improved stability of the squeezing level. The new signals also offer the
potential of reducing the overall rms phase noise and optical losses, each of
which would contribute to achieving a higher level of squeezing. The new error
signals are a pivotal development towards realizing the goal of 6 dB and more
of squeezing in advanced detectors and beyond
High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors
Current laser-interferometric gravitational wave detectors employ a self-homodyne
readout scheme where a comparatively large light power (5–50 mW) is detected per photosensitive
element. For best sensitivity to gravitational waves, signal levels as low as the quantum
shot noise have to be measured as accurately as possible. The electronic noise of the detection
circuit can produce a relevant limit to this accuracy, in particular when squeezed states of light
are used to reduce the quantum noise. We present a new electronic circuit design reducing the
electronic noise of the photodetection circuit in the audio band. In the application of this circuit at
the gravitational-wave detector GEO 600 the shot-noise to electronic noise ratio was permanently
improved by a factor of more than 4 above 1 kHz, while the dynamic range was improved by
a factor of 7. The noise equivalent photocurrent of the implemented photodetector and circuit
is about 5 µA/
√\ud
Hz above 1 kHz with a maximum detectable photocurrent of 20 mA. With the
new circuit, the observed squeezing level in GEO 600 increased by 0.2 dB. The new circuit also
creates headroom for higher laser power and more squeezing to be observed in the future in
GEO 600 and is applicable to other optics experiments
Influence of Optically Quenched Superconductivity on Quasiparticle Relaxation Rates in Bi2Sr2CaCu2O8+delta
We use time- and angle-resolved photoemission to measure quasiparticle
relaxation dynamics across a laser-induced superconducting phase transition in
Bi2Sr2CaCu2O8+delta. Whereas low-fluence measurements reveal picosecond
dynamics, sharp femtosecond dynamics emerge at higher fluence. Analyses of data
as a function of energy, momentum, and doping indicate that the closure of the
near-nodal gap and disruption of macroscopic coherence are primary mechanisms
driving this onset. The results demonstrate the important influence of
transient electronic structure on relaxation dynamics, which is relevant for
developing an understanding of nonequilibrium phase transitions.Comment: 6 pages, 4 figure
First demonstration of 6 dB quantum noise reduction in a kilometer scale gravitational wave observatory
Photon shot noise, arising from the quantum-mechanical nature of the light,
currently limits the sensitivity of all the gravitational wave observatories at
frequencies above one kilohertz. We report a successful application of squeezed
vacuum states of light at the GEO\,600 observatory and demonstrate for the
first time a reduction of quantum noise up to dB in a
kilometer-scale interferometer. This is equivalent at high frequencies to
increasing the laser power circulating in the interferometer by a factor of
four. Achieving this milestone, a key goal for the upgrades of the advanced
detectors, required a better understanding of the noise sources and losses, and
implementation of robust control schemes to mitigate their contributions. In
particular, we address the optical losses from beam propagation, phase noise
from the squeezing ellipse, and backscattered light from the squeezed light
source. The expertise gained from this work carried out at GEO 600 provides
insight towards the implementation of 10 dB of squeezing envisioned for
third-generation gravitational wave detectors
Bilinear noise subtraction at the GEO 600 observatory
We develop a scheme to subtract off bilinear noise from the gravitational wave strain data and demonstrate it at the GEO 600 observatory. Modulations caused by test mass misalignments on longitudinal control signals are observed to have a broadband effect on the mid-frequency detector sensitivity ranging from 50 Hz to 500 Hz. We estimate this bilinear coupling by making use of narrow-band signal injections that are already in place for noise projection purposes. A coherent bilinear signal is constructed by a two-stage system identification process where the involved couplings are approximated in terms of stable rational functions. The time-domain filtering efficiency is observed to depend upon the system identification process especially when the involved transfer functions cover a large dynamic range and have multiple resonant features. We improve upon the existing filter design techniques by employing a Bayesian adaptive directed search strategy that optimizes across the several key parameters that affect the accuracy of the estimated model. The resulting post-offline subtraction leads to a suppression of modulation side-bands around the calibration lines along with a broadband reduction of the mid-frequency noise floor. The filter coefficients are updated periodically to account for any non-stationarities that can arise within the coupling. The observed increase in the astrophysical range and a reduction in the occurrence of non-astrophysical transients suggest that the above method is a viable data cleaning technique for current and future gravitational wave observatories
- …
