51 research outputs found

    Quantifying the Twitter Influence of Third Party Commercial Entities versus Healthcare Providers in Thirteen Medical Conferences from 2011-2013

    Get PDF
    Introduction Twitter channels are increasingly popular at medical conferences. Many groups, including healthcare providers and third party entities (e.g., pharmaceutical or medical device companies) use these channels to communicate with one another. These channels are unregulated and can allow third party commercial entities to exert an equal or greater amount of Twitter influence than healthcare providers. Third parties can use this influence to promote their products or services instead of sharing unbiased, evidence-based information. In this investigation we quantified the Twitter influence that third party commercial entities had in 13 major medical conferences. Methods We analyzed tweets contained in the official Twitter hashtags of thirteen medical conferences from 2011 to 2013. We placed tweet authors into one of four categories based on their account profile: healthcare provider, third party commercial entity, none of the above and unknown. We measured Twitter activity by the number of tweet authors per category and the tweet-to-author ratio by category. We measured Twitter influence by the PageRank of tweet authors by category. Results We analyzed 51159 tweets authored by 8778 Twitter account holders in 13 conferences that were sponsored by 5 medical societies. A quarter of all authors identified themselves as healthcare providers, while only 18% could be identified as third party commercial entities. Healthcare providers had a greater tweet-to-author ratio than their third party commercial entity counterparts (8.98 versus 6.93 tweets). Despite having less authors and composing less tweets, third party commercial entities had a statistically similar PageRank as healthcare providers (0.761 versus 0.797). Conclusion The Twitter influence of third party commercial entities (PageRank) is similar to that of healthcare providers. This finding is interesting because the number of tweets and third party commercial entity authors required to achieve this PageRank is far fewer than that needed by healthcare providers. Without safety mechanisms in place, the Twitter channels of medical conferences can devolve into a venue for the spread of biased information rather than evidence-based medical knowledge that is expected at live conferences. Continuing to measure the Twitter influence that third parties exert can help conference organizers develop reasonable guidelines for Twitter channel activity

    Tweeting the Meeting: An In-Depth Analysis of Twitter Activity at Kidney Week 2011

    Get PDF
    In recent years, the American Society of Nephrology (ASN) has increased its efforts to use its annual conference to inform and educate the public about kidney disease. Social media, including Twitter, has been one method used by the Society to accomplish this goal. Twitter is a popular microblogging service that serves as a potent tool for disseminating information. It allows for short messages (140 characters) to be composed by any author and distributes those messages globally and quickly. The dissemination of information is necessary if Twitter is to be considered a tool that can increase public awareness of kidney disease. We hypothesized that content, citation, and sentiment analyses of tweets generated from Kidney Week 2011 would reveal a large number of educational tweets that were disseminated to the public. An ideal tweet for accomplishing this goal would include three key features: 1) informative content, 2) internal citations, and 3) positive sentiment score. Informative content was found in 29% of messages, greater than that found in a similarly sized medical conference (2011 ADA Conference, 16%). Informative tweets were more likely to be internally, rather than externally, cited (38% versus 22%, p<0.0001), thereby amplifying the original information to an even larger audience. Informative tweets had more negative sentiment scores than uninformative tweets (means −0.162 versus 0.199 respectively, p<0.0001), therefore amplifying a tweet whose content had a negative tone. Our investigation highlights significant areas of promise and improvement in using Twitter to disseminate medical information in nephrology from a scientific conference. This goal is pertinent to many nephrology-focused conferences that wish to increase public awareness of kidney disease

    Development and Validation of ML-DQA -- a Machine Learning Data Quality Assurance Framework for Healthcare

    Full text link
    The approaches by which the machine learning and clinical research communities utilize real world data (RWD), including data captured in the electronic health record (EHR), vary dramatically. While clinical researchers cautiously use RWD for clinical investigations, ML for healthcare teams consume public datasets with minimal scrutiny to develop new algorithms. This study bridges this gap by developing and validating ML-DQA, a data quality assurance framework grounded in RWD best practices. The ML-DQA framework is applied to five ML projects across two geographies, different medical conditions, and different cohorts. A total of 2,999 quality checks and 24 quality reports were generated on RWD gathered on 247,536 patients across the five projects. Five generalizable practices emerge: all projects used a similar method to group redundant data element representations; all projects used automated utilities to build diagnosis and medication data elements; all projects used a common library of rules-based transformations; all projects used a unified approach to assign data quality checks to data elements; and all projects used a similar approach to clinical adjudication. An average of 5.8 individuals, including clinicians, data scientists, and trainees, were involved in implementing ML-DQA for each project and an average of 23.4 data elements per project were either transformed or removed in response to ML-DQA. This study demonstrates the importance role of ML-DQA in healthcare projects and provides teams a framework to conduct these essential activities.Comment: Presented at 2022 Machine Learning in Health Care Conferenc

    Tweeting the meeting: An in-depth analysis of Twitter activity at kidney week 2011

    No full text
    In recent years, the American Society of Nephrology (ASN) has increased its efforts to use its annual conference to inform and educate the public about kidney disease. Social media, including Twitter, has been one method used by the Society to accomplish this goal. Twitter is a popular microblogging service that serves as a potent tool for disseminating information. It allows for short messages (140 characters) to be composed by any author and distributes those messages globally and quickly. The dissemination of information is necessary if Twitter is to be considered a tool that can increase public awareness of kidney disease. We hypothesized that content, citation, and sentiment analyses of tweets generated from Kidney Week 2011 would reveal a large number of educational tweets that were disseminated to the public. An ideal tweet for accomplishing this goal would include three key features: 1) informative content, 2) internal citations, and 3) positive sentiment score. Informative content was found in 29% of messages, greater than that found in a similarly sized medical conference (2011 ADA Conference, 16%). Informative tweets were more likely to be internally, rather than externally, cited (38% versus 22%, p&lt;0.0001), thereby amplifying the original information to an even larger audience. Informative tweets had more negative sentiment scores than uninformative tweets (means -0.162 versus 0.199 respectively, p&lt;0.0001), therefore amplifying a tweet whose content had a negative tone. Our investigation highlights significant areas of promise and improvement in using Twitter to disseminate medical information in nephrology from a scientific conference. This goal is pertinent to many nephrology-focused conferences that wish to increase public awareness of kidney disease

    Dearth of ICD Codes for Complications of Immune Checkpoint Inhibitors Impedes Clinical Care and Research

    No full text
    AbstractImmune checkpoint inhibitors (ICIs) are a rapidly expanding class of targeted therapies effective in the treatment of various cancers. However, while efficacious, ICIs have been associated with treatment complications, namely immune-related adverse events (irAEs). IrAEs of the endocrine system are among the most commonly reported irAEs, but despite their high incidence, standardized disease definitions and endocrine IrAE-specific International Classification of Diseases (ICD) codes remain lacking. This dearth of standardized nomenclature and ICD codes has in many ways impeded both the clinical care of patients and the progress of endocrine irAE-related research. ICD codes are used internationally and are essential for medical claims reporting in the health care setting, and they provide a universal language system for recording, reporting, and monitoring diseases. These codes are also a well-accepted form of electronic health record data capture that facilitates the collection, storage, and sharing of data. Therefore, the lack of standardized disease definitions and ICD codes has been associated with misclassification and suboptimal management of individuals with endocrine irAEs and has also been associated with reduced data availability, comparability, and quality. Harmonized and clinically relevant disease definitions along with the subsequent development of endocrine-irAE-specific ICD codes will provide a systematic approach to understanding the spectrum and burden of endocrine irAE diseases, and will have a positive effect across clinical, public health, and research settings.</jats:p
    corecore