15,334 research outputs found

    Leggett-Garg Inequality for a Two-Level System under Decoherence: A Broader Range of Violation

    Full text link
    We consider a macroscopic quantum system in a tilted double-well potential. By solving Hamiltonian equation, we obtain tunneling probabilities which contain oscillation effects. To show how one can decide between quantum mechanics and the implications of macrorealism assumption, a given form of Leggett-Garg inequality is used. The violation of this inequality occurs for a broader range of decoherence effects, compared to previous results obtained for two-level systems

    Matrix Coherence and the Nystrom Method

    Full text link
    The Nystrom method is an efficient technique to speed up large-scale learning applications by generating low-rank approximations. Crucial to the performance of this technique is the assumption that a matrix can be well approximated by working exclusively with a subset of its columns. In this work we relate this assumption to the concept of matrix coherence and connect matrix coherence to the performance of the Nystrom method. Making use of related work in the compressed sensing and the matrix completion literature, we derive novel coherence-based bounds for the Nystrom method in the low-rank setting. We then present empirical results that corroborate these theoretical bounds. Finally, we present more general empirical results for the full-rank setting that convincingly demonstrate the ability of matrix coherence to measure the degree to which information can be extracted from a subset of columns

    Beta-rhythm oscillations and synchronization transition in network models of Izhikevich neurons: effect of topology and synaptic type

    Get PDF
    Despite their significant functional roles, beta-band oscillations are least understood. Synchronization in neuronal networks have attracted much attention in recent years with the main focus on transition type. Whether one obtains explosive transition or a continuous transition is an important feature of the neuronal network which can depend on network structure as well as synaptic types. In this study we consider the effect of synaptic interaction (electrical and chemical) as well as structural connectivity on synchronization transition in network models of Izhikevich neurons which spike regularly with beta rhythms. We find a wide range of behavior including continuous transition, explosive transition, as well as lack of global order. The stronger electrical synapses are more conducive to synchronization and can even lead to explosive synchronization. The key network element which determines the order of transition is found to be the clustering coefficient and not the small world effect, or the existence of hubs in a network. These results are in contrast to previous results which use phase oscillator models such as the Kuramoto model. Furthermore, we show that the patterns of synchronization changes when one goes to the gamma band. We attribute such a change to the change in the refractory period of Izhikevich neurons which changes significantly with frequency.Comment: 7 figures, 1 tabl
    corecore