40,770 research outputs found
Inseparability inequalities for higher-order moments for bipartite systems
There are several examples of bipartite entangled states of continuous
variables for which the existing criteria for entanglement using the
inequalities involving the second order moments are insufficient. We derive new
inequalities involving higher order correlation, for testing entanglement in
non-Gaussian states. In this context we study an example of a non-Gaussian
state, which is a bipartite entangled state of the form .
Our results open up an avenue to search for new inequalities to test
entanglement in non-Gaussian states.Comment: 7 pages, Submitte
Analysis of MAGSAT data of the Indian region
Data tapes were decoded and 24 tracks over the Indian region were reduced to common elevation. Profiles of raw scalar and vector field data and the residuals along few passes were prepared. An anomaly data set was created from the Investigator-B tape. Data was sampled on an 0.5 deg by 0.5 deg grid
Off Resonant Pumping for Transition from Continuous to Discrete Spectrum and Quantum Revivals in Systems in Coherent States
We show that in parametrically driven systems and, more generally, in systems
in coherent states, off-resonant pumping can cause a transition from a
continuum energy spectrum of the system to a discrete one, and result in
quantum revivals of the initial state. The mechanism responsible for quantum
revivals in the present case is different from that in the non-linear
wavepacket dynamics of systems such as Rydberg atoms. We interpret the reported
phenomena as an optical analog of Bloch oscillations realized in Fock space and
propose a feasible scheme for inducing Bloch oscillations in trapped ions.Comment: 5 pages, 4 figures, submitted to Jnl. of Optics
Influence of damping on the vanishing of the electro-optic effect in chiral isotropic media
Using first principles, it is demonstrated that radiative damping alone
cannot lead to a nonvanishing electro-optic effect in a chiral isotropic
medium. This conclusion is in contrast with that obtained by a calculation in
which damping effects are included using the standard phenomenological model.
We show that these predictions differ because the phenomenological damping
equations are valid only in regions where the frequencies of the applied
electromagnetic fields are nearly resonant with the atomic transitions. We also
show that collisional damping can lead to a nonvanishing electrooptic effect,
but with a strength sufficiently weak that it is unlikely to be observable
under realistic laboratory conditions
Spontaneous Generation of Photons in Transmission of Quantum Fields in PT Symmetric Optical Systems
We develop a rigorous mathematically consistent description of PT symmetric
optical systems by using second quantization. We demonstrate the possibility of
significant spontaneous generation of photons in PT symmetric systems. Further
we show the emergence of Hanbury-Brown Twiss (HBT) correlations in spontaneous
generation. We show that the spontaneous generation determines decisively the
nonclassical nature of fields in PT symmetric systems. Our work can be applied
to other systems like plasmonic structure where losses are compensated by gain
mechanisms.Comment: 4 pages, 5 figure
- …
