5,856 research outputs found
Recommended from our members
The implications of climate change for the water environment in England
This paper reviews the implications of climate change for the water environment and its management in England. There is a large literature, but most studies have looked at flow volumes or nutrients and none have considered explicitly the implications of climate change for the delivery of water management objectives. Studies have been undertaken in a small number of locations. Studies have used observations from the past to infer future changes, and have used numerical simulation models with climate change scenarios. The literature indicates that climate change poses risks to the delivery of water management objectives, but that these risks depend on local catchment and water body conditions. Climate change affects the status of water bodies, and it affects the effectiveness of measures to manage the water environment and meet policy objectives.
The future impact of climate change on the water environment and its management is uncertain. Impacts are dependent on changes in the duration of dry spells and frequency of ‘flushing’ events, which are highly uncertain and not included in current climate scenarios. There is a good qualitative understanding of ways in which systems may change, but interactions between components of the water environment are poorly understood. Predictive models are only available for some components, and model parametric and structural uncertainty has not been evaluated. The impacts of climate change depend on other pressures on the water environment in a catchment, and also on the management interventions that are undertaken to achieve water management objectives.
The paper has also developed a series of consistent conceptual models describing the implications of climate change for pressures on the water environment, based around the source-pathway-receptor concept. They provide a framework for a systematic assessment across catchments and pressures of the implications of climate change for the water environment and its management
The evaluation of national accounting matrices with environmental accounts (NAMEA) as a methodology for carrying out a sustainability assessment of the Scottish food and drink sector
This report introduces environmental input-output (IO) accounts for Scotland as an example of a NAMEA framework. It provides an introduction to the use of basic IO multiplier methodology, which can be applied to examine pollution/waste generation and/or resource use under production and consumption accounting principles
Urban surface water pollution problems arising from misconnections
The impacts of misconnections on the organic and nutrient loadings to surface waters are assessed using specific household appliance data for two urban sub-catchments located in the London metropolitan region and the city of Swansea. Potential loadings of biochemical oxygen demand (BOD), soluble reactive phosphorus (PO4-P) and ammoniacal nitrogen (NH4-N) due to misconnections are calculated for three different scenarios based on the measured daily flows from specific appliances and either measured daily pollutant concentrations or average pollutant concentrations for relevant greywater and black water sources obtained from an extensive review of the literature. Downstream receiving water concentrations, together with the associated uncertainties, are predicted from derived misconnection discharge concentrations and compared to existing freshwater standards for comparable river types. Consideration of dilution ratios indicates that these would need to be of the order of 50–100:1 to maintain high water quality with respect to BOD and NH4-N following typical misconnection discharges but only poor quality for PO4-P is likely to be achievable. The main pollutant loading contributions to misconnections arise from toilets (NH4-N and BOD), kitchen sinks (BOD and PO4-P) washing machines (PO4-P and BOD) and, to a lesser extent, dishwashers (PO4-P). By completely eliminating toilet misconnections and ensuring misconnections from all other appliances do not exceed 2%, the potential pollution problems due to BOD and NH4-N discharges would be alleviated but this would not be the case for PO4-P. In the event of a treatment option being preferred to solve the misconnection problem, it is shown that for an area the size of metropolitan Greater London, a sewage treatment plant with a Population Equivalent value approaching 900,000would be required to efficiently remove BOD and NH4-N to safely dischargeable levels but such a plant is unlikely to have the capacity to deal satisfactorily with incoming PO4-P loads from misconnections
In search of ‘lost’ knowledge and outsourced expertise in flood risk management
This paper examines the parallel discourses of ‘lost’ local flood expertise and the growing use of commercial consultancies to outsource aspects of flood risk work. We critically examine the various claims and counter-claims about lost, local and external expertise in flood management, focusing on the aftermath of the 2007 floods in East Yorkshire, England. Drawing on interviews with consultants, drainage engineers and others, we caution against claims that privilege ‘local’ floods knowledge as ‘good’ and expert knowledge as somehow suspect. This paper urges carefulness in interpreting claims about local knowledge, arguing that it is important always to think instead of hybrid knowledge formations. We conclude by arguing that experiments in the co-production of flood risk knowledge need to be seen as part of a spectrum of ways for producing shared knowledge
Dynamics of biofilm re-growth in drinking water distributions systems
The majority of biomass within water distribution systems is in the form of attached biofilm. This is known to be central to drinking water quality degradation following treatment yet little understanding of the dynamics of these highly heterogeneous communities exists. This paper presents original information on such dynamics with findings demonstrating patterns of material accumulation, seasonality and influential factors. Rigorous flushing operations repeated over a one-year period on an operational, chlorinated system in the UK are presented. Intensive monitoring and sampling were undertaken including time series turbidity and detailed microbial analysis using 16S rRNA Illumina MiSeq sequencing. Results show bacterial dynamics were influenced by differences in the supplied water and by the material remaining attached to the pipe wall following flushing. Turbidity, metals and phosphate were the main factors correlated with the distribution of bacteria in the samples. Coupled with the lack of inhibition of biofilm development due to chlorine residual, this suggests that limiting inorganic nutrients, other than organic carbon, might be a viable component in treatment strategies to manage biofilms. The research also showed that repeat flushing exerted beneficial selective pressure, thus also a viable advantageous biofilm management option. This work advances our understanding of microbiological processes in drinking water distribution systems and helps inform strategies to optimise asset performance. IMPORTANCE: This research provides with novel information regarding dynamics of biofilm formation in real drinking water distribution systems made of different materials. This new knowledge on microbiological process in water supply systems can be used to optimise the performance of the distribution network and to guarantee safe and good quality drinking water to consumers
Recommended from our members
Can seasonal hydrological forecasts inform local decisions and actions? A decision-making activity
While this paper has a hydrological focus (a glossary† is included) the concept of our decision-making activity will be of wider interest and applicable to those involved in all aspects of geoscience communication.
Seasonal hydrological forecasts (SHF) provide insight into the river and groundwater levels that might be expected over the coming months. This is valuable for informing future flood or drought risk and water availability, yet studies investigating how SHF are used for decision-making are limited. Our activity was designed to capture how different water sector users, broadly flood and drought forecasters, water resource managers and groundwater hydrologists, interpret and act on SHF to inform decisions in the West Thames, UK. Using a combination of operational and hypothetical forecasts, participants were provided with 3 sets of progressively confident and locally tailored SHF for a flood event in 3 months’ time. Participants played with their ‘day-job’ hat on and were not informed whether the SHF represented a flood, drought or business-as-usual scenario. Participants increased their decision/action choice in response to more confident and locally tailored forecasts. Forecasters and groundwater hydrologists were most likely to request further information about the situation, inform other organisations and implement actions for preparedness. Water resource managers more consistently adopted a ‘watch and wait’ approach. Local knowledge, risk appetite and experience of previous flood events were important for informing decisions. Discussions highlighted that forecast uncertainty does not necessarily pose a barrier to use, but SHF need to be presented at a finer spatial resolution to aid local decision-making. SHF information that is visualised using combinations of maps, text, hydrographs and tables is beneficial for interpretation and better communication of SHF that are tailored to different user groups is needed. Decision-making activities are a great way of creating realistic scenarios that participants can identify with, whilst allowing the activity creators to observe different thought-processes. In this case, participants stated that the activity complemented their everyday work, introduced them to ongoing scientific developments and enhanced their understanding of how different organisations are engaging with and using SHF to aid decision-making across the West Thames
Recommended from our members
Biodegradation of the herbicide mecoprop-p with soil depth and its relationship with class III tfdA genes
Mecoprop-p [(R)-2-(4-chloro-2-methylphenoxy) propanoic acid) is widely used 37 in agriculture and poses an environmental concern because of its susceptibility to leach 38 from soil to water. We investigated the effect of soil depth on mecoprop-p 39 biodegradation and its relationship with the number and diversity of tfdA related genes, 40 which are the most widely known genes involved in degradation of the 41 phenoxyalkanoic acid group of herbicides by bacteria. Mecoprop-p half-life (DT50) was 42 approximately 12 days in soil sampled from <30 cm depth, and increased progressively 43 with soil depth, reaching over 84 days at 70-80 cm. In sub-soil there was a lag period of 44 between 23 and 34 days prior to a phase of rapid degradation. No lag phase occurred in 45 top-soil samples prior to the onset of degradation. The maximum degradation rate was 46 the same in top-soil and sub-soil samples. Although diverse tfdAα and tfdA genes were 47 present prior to mecoprop-p degradation, real time PCR revealed that degradation was 48 associated with proliferation of tfdA genes. The number of tfdA genes and the most 49 probable number of mecoprop-p degrading organisms in soil prior to mecoprop-p 50 addition were below the limit of quantification and detection respectively. Melting 51 curves from the real time PCR analysis showed that prior to mecoprop-p degradation 52 both class I and class III tfdA genes were present in top- and sub-soil samples. However 53 at all soil depths only tfdA class III genes proliferated during degradation. Denaturing 54 gradient gel electrophoresis confirmed that class III tfdA genes were associated with 55 mecoprop-p degradation. Degradation was not associated with the induction of novel 56 tfdA genes in top- or sub-soil samples, and there were no apparent differences in tfdA 57 gene diversity with soil depth prior to or following degradation
Sustainable risk management of emerging contaminants in municipal wastewaters
This article is available open access through the publisher’s website at the link below. Copyright @ 2009 The Royal Society.The presence of emerging contaminants in municipal wastewaters, particularly endocrine-disrupting compounds such as oestrogenic substances, has been the focus of much public concern and scientific attention in recent years. Due to the scientific uncertainty still surrounding their effects, the Precautionary Principle could be invoked for the interim management of potential risks. Therefore, precautionary prevention risk-management measures could be employed to reduce human exposure to the compounds of concern. Steroid oestrogens are generally recognized as the most significant oestrogenically active substances in domestic sewage effluent. As a result, the UK Environment Agency has championed a ‘Demonstration Programme’ to investigate the potential for removal of steroid oestrogens and alkylphenol ethoxylates during sewage treatment. Ecological and human health risks are interdependent, and ecological injuries may result in increased human exposures to contaminants or other stressors. In this context of limiting exposure to potential contaminants, examining the relative contribution of various compounds and pathways should be taken into account when identifying effective risk-management measures. In addition, the explicit use of ecological objectives within the scope of the implementation of the EU Water Framework Directive poses new challenges and necessitates the development of ecosystem-based decision tools. This paper addresses some of these issues and proposes a species sensitivity distribution approach to support the decision-making process related to the need and implications of sewage treatment work upgrade as risk-management measures to the presence of oestrogenic compounds in sewage effluent
- …
