2,261 research outputs found

    High fidelity quantum memory via dynamical decoupling: theory and experiment

    Full text link
    Quantum information processing requires overcoming decoherence---the loss of "quantumness" due to the inevitable interaction between the quantum system and its environment. One approach towards a solution is quantum dynamical decoupling---a method employing strong and frequent pulses applied to the qubits. Here we report on the first experimental test of the concatenated dynamical decoupling (CDD) scheme, which invokes recursively constructed pulse sequences. Using nuclear magnetic resonance, we demonstrate a near order of magnitude improvement in the decay time of stored quantum states. In conjunction with recent results on high fidelity quantum gates using CDD, our results suggest that quantum dynamical decoupling should be used as a first layer of defense against decoherence in quantum information processing implementations, and can be a stand-alone solution in the right parameter regime.Comment: 6 pages, 3 figures. Published version. This paper was initially entitled "Quantum gates via concatenated dynamical decoupling: theory and experiment", by Jacob R. West, Daniel A. Lidar, Bryan H. Fong, Mark F. Gyure, Xinhua Peng, and Dieter Suter. That original version split into two papers: http://arxiv.org/abs/1012.3433 (theory only) and the current pape

    Modeling-based determination of physiological parameters of systemic VOCs by breath gas analysis, part 2

    Full text link
    In a recent paper we presented a simple two compartment model which describes the influence of inhaled concentrations on exhaled breath concentrations for volatile organic compounds (VOCs) with small Henry constants. In this paper we extend this investigation concerning the influence of inhaled concentrations on exhaled breath concentrations for VOCs with higher Henry constants. To this end we extend our model with an additional compartment which takes into account the influence of the upper airways on exhaled breath VOC concentrations

    Structural and Electronic Properties of Amorphous and Polycrystalline In2Se3 Films

    Full text link
    Structural and electronic properties of amorphous and single-phase polycrystalline films of gamma- and kappa-In2Se3 have been measured. The stable gamma phase nucleates homogeneously in the film bulk and has a high resistivity, while the metastable kappa phase nucleates at the film surface and has a moderate resistivity. The microstructures of hot-deposited and post-annealed cold-deposited gamma films are quite different but the electronic properties are similar. The increase in the resistivity of amorphous In2Se3 films upon annealing is interpreted in terms of the replacement of In-In bonds with In-Se bonds during crystallization. Great care must be taken in the preparation of In2Se3 films for electrical measurements as the presence of excess chalcogen or surface oxidation may greatly affect the film properties.Comment: 23 pages and 12 figure
    corecore