1,583 research outputs found
Biomimetic self-assembly of tetrapeptides into fibrillar networks and organogels
The self-assembly features of a family of tetrapeptides inspired in silk structure are presented. An exhaustive study of the influence of the terminal alkyl chain length in this process is undertaken.
Scanning electron microscopy (SEM), wide-angle X-ray diffraction (WAXD), FTIR spectroscopy and circular dichroism are used for the structural analysis. These compounds, as in the natural model, self-assemble into antiparallel ?-sheet structures that further organize to form fibrillar aggregates. Furthermore, some of them are capable of forming a crowded network that entraps the solvent leading to physical gels with different microscopic morphologies. A model for the assembly process is propose
Disease Progression Mediated by Egr-1 Associated Signaling in Response to Oxidative Stress
When cellular reducing enzymes fail to shield the cell from increased amounts of reactive oxygen species (ROS), oxidative stress arises. The redox state is misbalanced, DNA and proteins are damaged and cellular transcription networks are activated. This condition can lead to the initiation and/or to the progression of atherosclerosis, tumors or pulmonary hypertension; diseases that are decisively furthered by the presence of oxidizing agents. Redox sensitive genes, like the zinc finger transcription factor early growth response 1 (Egr-1), play a pivotal role in the pathophysiology of these diseases. Apart from inducing apoptosis, signaling partners like the MEK/ERK pathway or the protein kinase C (PKC) can activate salvage programs such as cell proliferation that do not ameliorate, but rather worsen their outcome. Here, we review the currently available data on Egr-1 related signal transduction cascades in response to oxidative stress in the progression of epidemiologically significant diseases. Knowing the molecular pathways behind the pathology will greatly enhance our ability to identify possible targets for the development of new therapeutic strategies
Gelation properties of self-assembling N-acyl modified cytidine derivatives
In this study we report the synthesis of new cytidine derived gelators possessing acyl chains of different lengths. These low molecular weight gelators were shown to form self-supporting gels at 0.5 % (w/v) in binary systems of aqueous miscible polar organic solvent and water. The representative gels were studied using rheology and their fibrillar structure confirmed by TEM imaging and FTIR. We further demonstrated the use of these gels as potential drug delivery platforms by monitoring release characteristics of both high and low molecular weight fluorescently labelled tracers
A Condensation-Ordering Mechanism in Nanoparticle-Catalyzed Peptide Aggregation
Nanoparticles introduced in living cells are capable of strongly promoting
the aggregation of peptides and proteins. We use here molecular dynamics
simulations to characterise in detail the process by which nanoparticle
surfaces catalyse the self- assembly of peptides into fibrillar structures. The
simulation of a system of hundreds of peptides over the millisecond timescale
enables us to show that the mechanism of aggregation involves a first phase in
which small structurally disordered oligomers assemble onto the nanoparticle
and a second phase in which they evolve into highly ordered beta-sheets as
their size increases
Recommended from our members
Self-assembly of a model amphiphilic oligopeptide incorporating an arginine headgroup
The self-assembly in aqueous solution of the alanine-rich peptide A12R2 containing twelve alanine residues and two arginine residues has been investigated. This oligomeric peptide was synthesized via NCA-polymerization methods. The surfactant-like peptide is found via FTIR to form antiparallel dimers which aggregate into twisted fibrils, as revealed by cryogenic-transmission electron microscopy. The fibril substructure is probed via detailed X-ray scattering experiments, and are uniquely comprised of
twisted tapes only 5 nm wide, set by the width of the antiparallel A12R2 dimers. The packing of the alanine residues leads to distinct “b-sheet” spacings compared to those for amyloid-forming peptides. For this peptide, b-sheet structure coexists with some a-helical content. These ultrafine amyloid fibrils present arginine at high density on their surfaces, and this may lead to applications in
nanobiotechnology
Pleasure ville- Psychogeographical experiments in the city. A presentation for The Essex University conference: Real and Imagined Cities, November 2011.
This is a brief introduction of the theory of situationists and look at contemporary urban explorers in order to set the scence for the exploration of a series of psychogeographical experiments run by the authors.
the presentation is divided in two parts, the first part forms the platform for the second one to develop and unfold.
At the end, the audience is asked to participate to the experiments
Changes in the distribution of fitness effects and adaptive mutational spectra following a single first step towards adaptation.
Historical contingency and diminishing returns epistasis have been typically studied for relatively divergent genotypes and/or over long evolutionary timescales. Here, we use Saccharomyces cerevisiae to study the extent of diminishing returns and the changes in the adaptive mutational spectra following a single first adaptive mutational step. We further evolve three clones that arose under identical conditions from a common ancestor. We follow their evolutionary dynamics by lineage tracking and determine adaptive outcomes using fitness assays and whole genome sequencing. We find that diminishing returns manifests as smaller fitness gains during the 2nd step of adaptation compared to the 1st step, mainly due to a compressed distribution of fitness effects. We also find that the beneficial mutational spectra for the 2nd adaptive step are contingent on the 1st step, as we see both shared and diverging adaptive strategies. Finally, we find that adaptive loss-of-function mutations, such as nonsense and frameshift mutations, are less common in the second step of adaptation than in the first step
Recommended from our members
Self-assembly of the anti-fungal polyene amphotericin B into giant helically-twisted nanotapes
The amphiphilic polyene amphotericin B, a powerful treatment for systemic fungal infections, is shown to exhibit a critical aggregation concentration, and to form giant helically-twisted nanostructures via self-assembly in basic aqueous solution
Adaptive roles of SSY1 and SIR3 during cycles of growth and starvation in Saccharomyces cerevisiae populations enriched for quiescent or nonquiescent cells
Over its evolutionary history, Saccharomyces cerevisiae has evolved to be well-adapted to fluctuating nutrient availability. In the presence of sufficient nutrients, yeast cells continue to proliferate, but upon starvation haploid yeast cells enter stationary phase and differentiate into nonquiescent (NQ) and quiescent (Q) cells. Q cells survive stress better than NQ cells and show greater viability when nutrient-rich conditions are restored. To investigate the genes that may be involved in the differentiation of Q and NQ cells, we serially propagated yeast populations that were enriched for either only Q or only NQ cell types over many repeated growth–starvation cycles. After 30 cycles (equivalent to 300 generations), each enriched population produced a higher proportion of the enriched cell type compared to the starting population, suggestive of adaptive change. We also observed differences in each population’s fitness suggesting possible tradeoffs: clones from NQ lines were better adapted to logarithmic growth, while clones from Q lines were better adapted to starvation. Whole-genome sequencing of clones from Q- and NQ-enriched lines revealed mutations in genes involved in the stress response and survival in limiting nutrients (ECM21, RSP5, MSN1, SIR4, and IRA2) in both Q and NQ lines, but also differences between the two lines: NQ line clones had recurrent independent mutations affecting the Ssy1p-Ptr3p-Ssy5p (SPS) amino acid sensing pathway, while Q line clones had recurrent, independent mutations in SIR3 and FAS1. Our results suggest that both sets of enriched-cell type lines responded to common, as well as distinct, selective pressures
- …
