939 research outputs found
Radix-2n serial–serial multipliers
All serial–serial multiplication structures previously reported in the literature have been
confined to bit serial–serial multipliers. An architecture for digit serial–serial multipliers is presented. A set of designs are derived from the radix-2n design procedure, which was first reported by the authors for the design of bit level pipelined digit serial–parallel structures. One significant aspect of the new designs is that they can be pipelined to the bit level and give the designer the flexibility to obtain the best trade-off between throughput rate and hardware cost by varying the digit size and the number of pipelining levels. Also, an area-efficient digit serial–serial multiplier is proposed which provides a 50% reduction in hardware without degrading the speed performance.
This is achieved by exploiting the fact that some cells are idle for most of the multiplication
operation. In the new design, the computations of these cells are remapped to other cells, which
make them redundant. The new designs have been implemented on the S40BG256 device from the
SPARTAN family to prove functionality and assess performance
Pre-processing of integral images for 3-D displays
This paper seeks to explore a method to accurately correct geometric distortions caused during the capture of three dimensional (3-D) integral images. Such distortions are rotational and scaling errors which, if not corrected, will cause banding and moire effects on the replayed image. The method for calculating the angle of deviation in the 3-D Integral Images is based on Hough Transform. It allows detection of the angle necessary for correction of the rotational error. Experiments have been conducted on a number of 3-D integral image samples and it has been found that the proposed method produces results with accuracy of 0.05 deg
The refocusing distance of a standard plenoptic photograph
IEEE International Conference PaperIn the past years, the plenoptic camera aroused an increasing interest in the field of computer vision. Its capability of capturing three-dimensional image data is achieved by an array of micro lenses placed in front of a traditional image sensor. The acquired light field data allows for the reconstruction of photographs focused at different depths. Given the plenoptic camera parameters, the metric distance of refocused objects may be retrieved with the aid of geometric ray tracing. Until now there was a lack of experimental results using real image data to prove this conceptual solution. With this paper, the very first experimental work is presented on the basis of a new ray tracing model approach, which considers more accurate micro image centre positions. To evaluate the developed method, the blur metric of objects in a refocused image stack is measured and compared with proposed predictions. The results suggest quite an accurate approximation for distant objects and deviations for objects closer to the camera device
A joint motion & disparity motion estimation technique for 3D integral video compression using evolutionary strategy
3D imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging, which can capture true 3D color images with only one camera, has been seen as the right technology to offer stress-free viewing to audiences of more than one person. Just like any digital video, 3D video sequences must also be compressed in order to make it suitable for consumer domain applications. However, ordinary compression techniques found in state-of-the-art video coding standards such as H.264, MPEG-4 and MPEG-2 are not capable of producing enough compression while preserving the 3D clues. Fortunately, a huge amount of redundancies can be found in an integral video sequence in terms of motion and disparity. This paper discusses a novel approach to use both motion and disparity information to compress 3D integral video sequences. We propose to decompose the integral video sequence down to viewpoint video sequences and jointly exploit motion and disparity redundancies to maximize the compression. We further propose an optimization technique based on evolutionary strategies to minimize the computational complexity of the joint motion disparity estimation. Experimental results demonstrate that Joint Motion and Disparity Estimation can achieve over 1 dB objective quality gain over normal motion estimation. Once combined with Evolutionary strategy, this can achieve up to 94% computational cost saving
Two-dimensional DCT/IDCT architecture
A fully parallel architecture for the computation of a two-dimensional (2-D) discrete cosine transform (DCT), based on row-column decomposition is presented. It uses the same one dimensional (1-D) DCT unit for the row and column computations and (N2+N) registers to perform the transposition. It possesses features of regularity and modularity, and is thus well suited for VLSI implementation. It can be used for the computation of either the forward or the inverse 2-D DCT. Each 1-D DCT unit uses N fully parallel vector inner product (VIP) units. The design of the VIP units is based on a systematic design methodology using radix-2” arithmetic, which allows partitioning of the elements of each vector into small groups. Array multipliers without the final adder are used to produce the different partial product terms. This allows a more efficient use of 4:2 compressors for the accumulation of the products in the intermediate stages and reduces the number of accumulators from N to one. Using this procedure, the 2-D DCT architecture requires less than N2 multipliers (in terms of area occupied) and only 2N adders. It can compute a N x N-point DCT at a rate of one complete transform per N cycles after an appropriate initial delay
Bit-level pipelined digit-serial array processors
A new architecture for high performance digit-serial vector inner product (VIP) which can be pipelined to the bit-level is introduced. The design of the digit-serial vector inner product is based on a new systematic design methodology using radix-2n arithmetic. The proposed architecture allows a high level of bit-level pipelining to increase the throughput rate with minimum initial delay and minimum area. This will give designers greater flexibility in finding the best tradeoff between hardware cost and throughput rate. It is shown that sub-digit pipelined digit-serial structure can achieve a higher throughput rate with much less area consumption than an equivalent bit-parallel structure. A twin-pipe architecture to double the throughput rate of digit-serial multipliers and consequently that of the digit-serial vector inner product is also presented. The effect of the number of pipelining levels and the twin-pipe architecture on the throughput rate and hardware cost are discussed. A two's complement digit-serial architecture which can operate on both negative and positive numbers is also presented
Formes de contact ayant le même champ de Reeb
2000 Mathematics Subject Classification: 37J55, 53D10, 53D17, 53D35.In this paper, we study contact forms on a 3-manifold having a common Reeb vector field R. The main result is that when the contact forms induce the same orientation, they are diffeomorphic
Real-time refocusing using an FPGA-based standard plenoptic camera
Plenoptic cameras are receiving increased attention in scientific and commercial applications because they capture the entire structure of light in a scene, enabling optical transforms (such as focusing) to be applied computationally after the fact, rather than once and for all at the time a picture is taken. In many settings, real-time inter active performance is also desired, which in turn requires significant computational power due to the large amount of data required to represent a plenoptic image. Although GPUs have been shown to provide acceptable performance for real-time plenoptic rendering, their cost and power requirements make them prohibitive for embedded uses (such as in-camera). On the other hand, the computation to accomplish plenoptic rendering is well structured, suggesting the use of specialized hardware. Accordingly, this paper presents an array of switch-driven finite impulse response filters, implemented with FPGA to accomplish high-throughput spatial-domain rendering. The proposed architecture provides a power-efficient rendering hardware design suitable for full-video applications as required in broadcasting or cinematography. A benchmark assessment of the proposed hardware implementation shows that real-time performance can readily be achieved, with a one order of magnitude performance improvement over a GPU implementation and three orders ofmagnitude performance improvement over a general-purpose CPU implementation
Depth mapping of integral images through viewpoint image extraction with a hybrid disparity analysis algorithm
Integral imaging is a technique capable of displaying 3–D images with continuous parallax in full natural color. It is one of the most promising methods for producing smooth 3–D images. Extracting depth information from integral image has various applications ranging from remote inspection, robotic vision, medical imaging, virtual reality, to content-based image coding and manipulation for integral imaging based 3–D TV. This paper presents a method of generating a depth map from unidirectional integral images through viewpoint image extraction and using a hybrid disparity analysis algorithm combining multi-baseline, neighbourhood constraint and relaxation strategies. It is shown that a depth map having few areas of uncertainty can be obtained from both computer and photographically generated integral images using this approach. The acceptable depth maps can be achieved from photographic captured integral images containing complicated object scene
- …
