17 research outputs found
Perspective of the Surviving Sepsis Campaign on the Management of Pediatric Sepsis in the Era of Coronavirus Disease 2019
Severe acute respiratory syndrome coronavirus 2 is a novel cause of organ dysfunction in children, presenting as either coronavirus disease 2019 with sepsis and/or respiratory failure or a hyperinflammatory shock syndrome. Clinicians must now consider these diagnoses when evaluating children for septic shock and sepsis-associated organ dysfunction. The Surviving Sepsis Campaign International Guidelines for the Management of Septic Shock and Sepsis-associated Organ Dysfunction in Children provide an appropriate framework for the early recognition and initial resuscitation of children with sepsis or septic shock caused by all pathogens, including severe acute respiratory syndrome coronavirus 2. However, the potential benefits of select adjunctive therapies may differ from non-coronavirus disease 2019 sepsis
Insulin improves protein balance in adequately fed babies on extracorporeal life support
Performance of an Electronic Decision Support System as a Therapeutic Intervention During a Multicenter PICU Clinical Trial: Heart and Lung Failure-Pediatric Insulin Titration Trial (HALF-PINT).
BACKGROUND: The use of electronic clinical decision support (CDS) systems for pediatric critical care trials is rare. We sought to describe in detail the use of a CDS tool (Children's Hospital Euglycemia for Kids Spreadsheet [CHECKS]), for the management of hyperglycemia during the 32 multicenter Heart And Lung Failure-Pediatric Insulin Titration trial. RESEARCH QUESTION: In critically ill pediatric patients who were treated with CHECKS, how was user compliance associated with outcomes; and what patient and clinician factors might account for the observed differences in CHECKS compliance? STUDY DESIGN AND METHODS: During an observational retrospective study of compliance with a CDS tool used during a prospective randomized controlled trial, we compared patients with high and low CHECKS compliance. We investigated the association between compliance and blood glucose metrics. We describe CHECKS and use a computer interface analysis framework (the user, function, representation, and task analysis framework) to categorize user interactions. We discuss implications for future randomized controlled trials. RESULTS: Over a 4.5-year period, 658 of 698 children were treated with the CHECKS protocol for ≥24 hours with a median of 119 recommendations per patient. Compliance per patient was high (median, 99.5%), with only 30 patients having low compliance (<90%). Patients with low compliance were from 16 of 32 sites, younger (P = .02), and less likely to be on inotropic support (P = .04). They were more likely to be have been assigned randomly to the lower blood glucose target (80% vs 48%; P < .001) and to have spent a shorter time (53% vs 75%; P < .001) at the blood glucose target. Overrides (classified by the user, function, representation, and task analysis framework), were largely (89%) due to the user with patient factors contributing 29% of the time. INTERPRETATION: The use of CHECKS for the Heart And Lung Failure-Pediatric Insulin Titration trial resulted in a highly reproducible and explicit method for the management of hyperglycemia in critically ill children across varied environments. CDS systems represent an important mechanism for conducting explicit complex pediatric critical care trials. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01565941, registered March 29 2012; https://clinicaltrials.gov/ct2/show/NCT01565941?term=HALF-PINT&draw=2&rank=1
