559 research outputs found

    Fate and occurrence of alkylphenolic compounds in sewage sludges determined by liquid chromatography tandem mass spectrometry

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2009 Taylor & Francis.An analytical method has been developed and applied to determine the concentrations of the nonionic alkylphenol polyethoxylate surfactants and their metabolites, alkylphenoxy carboxylates and alkyphenols, in sewage sludges. The compounds were extracted with methanol/acetone (1:1 v/v) from sludge, and concentrated extracts were cleaned by silica solid‐phase extraction prior to determination by liquid chromatography tandem mass spectrometry. The recoveries, determined by spiking sewage sludge at two concentrations, ranged from 51% to 89% with method detection limits from 6 µg kg−1 to 60 µg kg−1. The methodology was subsequently applied to sludge samples obtained from a carbonaceous activated sludge plant, a nitrifying/denitrifying activated sludge plant and a nitrifying/denitrifying activated sludge plant with phosphorus removal. Concentrations of nonylphenolic compounds were two to three times higher than their octyl analogues. Long‐chain nonylphenol polyethoxylates (NP3–12EO) ranged from 16 µg kg−1 to 11754 µg kg−1. The estrogenic metabolite nonylphenol was present at concentrations ranging from 33 µg kg−1 to 6696 µg kg−1.Public Utilities Board of Singapore, Thames Water and Yorkshire Water

    A critical review of the formation of mono- and dicarboxylated metabolic intermediates of alkylphenol polyethoxylates during wastewater treatment and their environmental significance

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2010 Taylor & Francis.Alkylphenoxyacetic acids, the metabolic biodegradation products of alkylphenol ethoxylates, are commonly found in wastewaters and sewage effluents. These persistent hydrophilic derivatives possess intrinsic estrogenic activity, which can mimic natural hormones. Their concentrations increase through the sewage treatment works as a result of biodegradation and biotransformation, and when discharged can disrupt endocrine function in fish. These acidic metabolites represent the dominant alkylphenolic compounds found in wastewater effluent and their presence is cause for concern as, potentially, through further biotransformation and biodegradation, they can act as sources of nonylphenol, which is toxic and estrogenic. The authors aim to assess the mechanisms of formation as well as elimination of alkylphenoxyacetic acids within conventional sewage treatment works with the emphasis on the activated sludge process. In addition, they evaluate the various factors influencing their degradation and formation in laboratory scale and full-scale systems. The environmental implications of these compounds are considered, as is the need for tertiary treatment processes for their removal

    Influence of operating parameters on the biodegradation of steroid estrogens and nonylphenolic compounds during biological wastewater treatment processes

    Get PDF
    This document is the unedited author's version of a Submitted Work that was subsequently accepted for publication in Environmental Science & Technology, copyright © American Chemical Society after peer review. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/es901612v.This study investigated operational factors influencing the removal of steroid estrogens and nonylphenolic compounds in two sewage treatment works, one a nitrifying/denitrifying activated sludge plant and the other a nitrifying/denitrifying activated sludge plant with phosphorus removal. Removal efficiencies of >90% for steroid estrogens and for longer chain nonylphenol ethoxylates (NP4−12EO) were observed at both works, which had equal sludge ages of 13 days. However, the biological activity in terms of milligrams of estrogen removed per day per tonne of biomass was found to be 50−60% more efficient in the nitrifying/denitrifying activated sludge works compared to the works which additionally incorporated phosphorus removal. A temperature reduction of 6 °C had no impact on the removal of free estrogens, but removal of the conjugated estrone-3-sulfate was reduced by 20%. The apparent biomass sorption (LogKp) values were greater in the nitrifying/denitrifying works than those in the nitrifying/denitrifying works with phosphorus removal for both steroid estrogens and nonylphenolic compounds possibly indicating a different cell surface structure and therefore microbial population. The difference in biological activity (mg tonne−1 d−1) identified in this study, of up to seven times, suggests that there is the potential for enhancing the removal of estrogens and nonylphenols if more detailed knowledge of the factors responsible for these differences can be identified and maximized, thus potentially improving the quality of receiving waters.Public Utilities Board (Singapore), Anglian Water Ltd, Severn Trent Water Ltd, Thames Water Utilities Ltd, United Utilities 393 Plc and Yorkshire Water Services

    Label-free electrochemical monitoring of DNA ligase activity

    Get PDF
    This study presents a simple, label-free electrochemical technique for the monitoring of DNA ligase activity. DNA ligases are enzymes that catalyze joining of breaks in the backbone of DNA and are of significant scientific interest due to their essential nature in DNA metabolism and their importance to a range of molecular biological methodologies. The electrochemical behavior of DNA at mercury and some amalgam electrodes is strongly influenced by its backbone structure, allowing a perfect discrimination between DNA molecules containing or lacking free ends. This variation in electrochemical behavior has been utilized previously for a sensitive detection of DNA damage involving the sugar-phosphate backbone breakage. Here we show that the same principle can be utilized for monitoring of a reverse process, i.e., the repair of strand breaks by action of the DNA ligases. We demonstrate applications of the electrochemical technique for a distinction between ligatable and unligatable breaks in plasmid DNA using T4 DNA ligase, as well as for studies of the DNA backbone-joining activity in recombinant fragments of E. coli DNA ligase

    PARP, transcription and chromatin modeling

    Get PDF
    Compaction mode of chromatin and chromatin highly organised structures regulate gene expression. Posttranslational modifications, histone variants and chromatin remodelers modulate the compaction, structure and therefore function of specific regions of chromatin. The generation of poly(ADP-ribose) (PAR) is emerging as one of the key signalling events on sites undergoing chromatin structure modulation. PAR is generated locally in response to stresses. These include genotoxic stress but also differentiation signals, metabolic and hormonal cues. A pictures emerges in which transient PAR formation is essential to orchestrate chromatin remodelling and transcription factors allowing the cell to adapt to alteration in its environment. This review summarizes the diverse factors of ADP-ribosylation in the adaptive regulation of chromatin structure and transcription

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Regulation of a phage defence island by RptR, a novel repressor that controls restriction-modification systems in diverse bacteria

    Get PDF
    Bacteria encode a panoply of defence systems to overcome phage infection. In recent years, over 100 defence systems have been identified, with the majority of these found co-localized in defence islands. Although there has been much progress in understanding the mechanisms of anti-phage defence employed by bacteria, far less is known about their regulation before and during phage infection. Here, we describe RptR (RMS-proximal transcriptional regulator), a small transcriptional regulator of a defence island in enteropathogenic Escherichia coli composed of a toxin-antitoxin system, DarTG2, embedded within a Type I restriction-modification system (RMS). We determined the molecular structure of a RptR homodimer and, using transcriptional reporter and in vitro DNA binding assays, show that RptR represses the promoter of the defence island by binding to a series of three direct repeats in the promoter. Furthermore, we demonstrate, using the structural models of RptR validated with electrophoretic mobility shift assays, that the minimal RptR binding site is a 6-bp palindrome, TAGCTA. Both RptR and its binding site are highly conserved across diverse bacterial genomes with a strong genetic association with Type I RMS, highlighting the role of RptR as a novel regulatory component of an important mechanism for anti-phage defence in bacteria

    Reversible ADP-ribosylation of RNA

    Get PDF
    ADP-ribosylation is a reversible chemical modification catalysed by ADP-ribosyltransferases such as PARPs that utilize nicotinamide adenine dinucleotide (NAD+) as a cofactor to transfer monomer or polymers of ADP-ribose nucleotide onto macromolecular targets such as proteins and DNA. ADP-ribosylation plays an important role in several biological processes such as DNA repair, transcription, chromatin remodelling, host-virus interactions, cellular stress response and many more. Using biochemical methods we identify RNA as a novel target of reversible mono-ADP-ribosylation. We demonstrate that the human PARPs - PARP10, PARP11 and PARP15 as well as a highly diverged PARP homologue TRPT1, ADP-ribosylate phosphorylated ends of RNA. We further reveal that ADP-ribosylation of RNA mediated by PARP10 and TRPT1 can be efficiently reversed by several cellular ADP-ribosylhydrolases (PARG, TARG1, MACROD1, MACROD2 and ARH3), as well as by MACROD-like hydrolases from VEEV and SARS viruses. Finally, we show that TRPT1 and MACROD homologues in bacteria possess activities equivalent to the human proteins. Our data suggest that RNA ADP-ribosylation may represent a widespread and physiologically relevant form of reversible ADP-ribosylation signalling

    The Transcriptional Response to DNA-Double-Strand Breaks in Physcomitrella patens

    Get PDF
    The model bryophyte Physcomitrella patens is unique among plants in supporting the generation of mutant alleles by facile homologous recombination-mediated gene targeting (GT). Reasoning that targeted transgene integration occurs through the capture of transforming DNA by the homology-dependent pathway for DNA double-strand break (DNA-DSB) repair, we analysed the genome-wide transcriptomic response to bleomycin-induced DNA damage and generated mutants in candidate DNA repair genes. Massively parallel (Illumina) cDNA sequencing identified potential participants in gene targeting. Transcripts encoding DNA repair proteins active in multiple repair pathways were significantly up-regulated. These included Rad51, CtIP, DNA ligase 1, Replication protein A and ATR in homology-dependent repair, Xrcc4, DNA ligase 4, Ku70 and Ku80 in non-homologous end-joining and Rad1, Tebichi/polymerase theta, PARP in microhomology-mediated end-joining. Differentially regulated cell-cycle components included up-regulated Rad9 and Hus1 DNA-damage-related checkpoint proteins and down-regulated D-type cyclins and B-type CDKs, commensurate with the imposition of a checkpoint at G2 of the cell cycle characteristic of homology-dependent DNA-DSB repair. Candidate genes, including ATP-dependent chromatin remodelling helicases associated with repair and recombination, were knocked out and analysed for growth defects, hypersensitivity to DNA damage and reduced GT efficiency. Targeted knockout of PpCtIP, a cell-cycle activated mediator of homology-dependent DSB resection, resulted in bleomycin-hypersensitivity and greatly reduced GT efficiency

    Simultaneous analysis of opioid analgesics and their metabolites in municipal wastewaters and river water by liquid chromatography–tandem mass spectrometry

    Get PDF
    Although published literature provides a clear demonstration of widespread occurrence of opioid analgesics (OAs) in the aquatic environment, analytical methods suitable for a systematic study of this pharmaceutical class, which would include a broad spectrum of opioid analgesics and their metabolites, are still missing. In this work, a comprehensive multiresidue method for quantitative analysis of 27 opioid analgesics and their metabolites, including 2 morphine glucuronide conjugates, was developed and validated for three matrices: raw wastewater (RW), secondary effluent (SE) and river water. The method comprised different classes of opioid analgesics, including natural opiates (morphine and codeine),their semi-synthetic derivatives (hydrocodone, hydromorphone, oxycodone, oxymorphone and buprenorphine) as well as fully synthetic opioids such as methadone, fentanyl, sufentanil, propoxyphene and tramadol. The optimized enrichment procedure involved mixed-mode, strong cation-exchange sorbent in combination with a sequential elution procedure. The extracts were analyzed by reversed-phase liquid chromatography using a Synergy Polar column coupled to electrospray ionization tandem mass spectrometry (LC–MS/MS). Accurate quantification of target OAs was achieved using 19 deuterated analogues as surrogate standards. Method accuracies for RW, SE and river water varied in the range from 91 to 126%, 74 to 120% and 75 to 116%, respectively. Careful optimization of the procedure allowed reliable determination of OAs with method quantification limits in the low ng/L range (RW: 0.3-3.5 ng/L; SE: 0.2-1.9 ng/L, river water: 0.1-0.8 ng/L. The developed method was applied for analysis of RW, SE and river water samples from Croatia. The concentrations of individual OAs in municipal wastewater varied in a wide range (from < QL to 859 ng/L) and the most prevalent representatives were tramadol, codeine, morphine and methadone and their derivatives. Elevated concentrations of morphine glucuronides (up to 370 ng/L) found in raw municipal wastewater indicated their importance in the overall morphine mass balance
    corecore