767 research outputs found
Molecularly imprinted polymer beads for nicotine recognition prepared by RAFT precipitation polymerization: a step forward towards multifunctionalities
A nicotine imprinted polymer was synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization using methacrylic acid (MAA) as a functional monomer. The resulting molecularly imprinted polymers were monodispersed beads with an average diameter of 1.55 mu m. The molecular selectivity of the imprinted polymer beads was evaluated by studying the uptake of nicotine and its structural analogs by the polymer beads. Equilibrium binding results indicate that the amount of nicotine bound to the imprinted polymer beads is significantly higher than that bound to the non-imprinted polymer in both acetonitrile and in a mixture of acetonitrile and water. The RAFT reagent present on the surface of the polymer beads allowed straightforward grafting of hydrophilic polymer brushes on the particle surface. In addition to the demonstrated molecular selectivity and the straightforward surface modification of the imprinted polymer beads, we also show that the dithioester end groups on the surface of the polymer beads can be converted into new thiol groups without sacrificing the specific molecular recognition. Through the new terminal thiol groups, a fluorescent dye was conveniently conjugated to the imprinted polymer beads via Michael addition reaction. The living characteristic of RAFT and the versatile thiol groups that can be derived from the RAFT reagent provide many new possibilities for realizing multi-functionalities for molecularly imprinted polymers
Seroprevalence and Risk Factors of Inkoo Virus in Northern Sweden
The mosquito-borne Inkoo virus (INKV) is a member of the California serogroup in the family Bunyaviridae, genus Orthobunyavirus. These viruses are associated with fever and encephalitis, although INKV infections are not usually reported and the incidence is largely unknown. The aim of the study was to determine the prevalence of anti-INKV antibodies and associated risk factors in humans living in northern Sweden. Seroprevalence was investigated using the World Health Organization Monitoring of Trends and Determinants in Cardiovascular Disease study, where a randomly selected population aged between 25 and 74 years (N = 1,607) was invited to participate. The presence of anti-INKV IgG antibodies was determined by immunofluorescence assay. Seropositivity for anti-INKV was significantly higher in men (46.9%) than in women (34.8%; P <0.001). In women, but not in men, the prevalence increased somewhat with age (P = 0.06). The peak in seropositivity was 45-54 years for men and 55-64 years for women. Living in rural areas was associated with a higher seroprevalence. In conclusion, the prevalence of anti-INKV antibodies was high in northern Sweden and was associated with male sex, older age, and rural living. The age distribution indicates exposure to INKV at a relatively early age. These findings will be important for future epidemiological and clinical investigations of this relatively unknown mosquito-borne virus.Peer reviewe
The Use of Infrared Thermography as a Novel Approach for Real-Time Validation of PCR Thermocyclers
Validation of PCR thermocycler performance is crucial to obtain reliable results. In this study, infrared (IR) thermography was evaluated as a novel validation tool. After stabilisation, no significant difference in the temperatures recorded using thermography and a reference block-based system was found. By employing IR thermography, information about the length of the time until temperature stabilisation in the sample could be obtained. This study shows the potential of using IR thermography for validation of thermocyclers. © Springer Science + Business Media, LLC 2009.</p
A comparison of dry and wet season aerosol number fluxes over the Amazon rain forest
Vertical number fluxes of aerosol particles and vertical fluxes of CO(2) were measured with the eddy covariance method at the top of a 53 m high tower in the Amazon rain forest as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) experiment. The observed aerosol number fluxes included particles with sizes down to 10 nm in diameter. The measurements were carried out during the wet and dry season in 2008. In this study focus is on the dry season aerosol fluxes, with significant influence from biomass burning, and these are compared with aerosol fluxes measured during the wet season. Net particle deposition fluxes dominated in daytime in both seasons and the deposition flux was considerably larger in the dry season due to the much higher dry season particle concentration. The particle transfer velocity increased linearly with increasing friction velocity in both seasons. The difference in transfer velocity between the two seasons was small, indicating that the seasonal change in aerosol number size distribution is not enough for causing any significant change in deposition velocity. In general, particle transfer velocities in this study are low compared to studies over boreal forests. The reasons are probably the high percentage of accumulation mode particles and the low percentage of nucleation mode particles in the Amazon boundary layer, both in the dry and wet season, and low wind speeds in the tropics compared to the midlatitudes. In the dry season, nocturnal particle fluxes behaved very similar to the nocturnal CO(2) fluxes. Throughout the night, the measured particle flux at the top of the tower was close to zero, but early in the morning there was an upward particle flux peak that is not likely a result of entrainment or local pollution. It is possible that these morning upward particle fluxes are associated with emission of primary biogenic particles from the rain forest. Emitted particles may be stored within the canopy during stable conditions at nighttime, similarly to CO(2), and being released from the canopy when conditions become more turbulent in the morning.National Institute for Research in the Amazon (INPA)LBACNPq/MCTFAPES
Aerosol number fluxes over the Amazon rain forest during the wet season
Number fluxes of particles with diameter larger than 10 nm were measured with the eddy covariance method over the Amazon rain forest during the wet season as part of the LBA (The Large Scale Biosphere Atmosphere Experiment in Amazonia) campaign 2008. The primary goal was to investigate whether sources or sinks dominate the aerosol number flux in the tropical rain forest-atmosphere system. During the measurement campaign, from 12 March to 18 May, 60% of the particle fluxes pointed downward, which is a similar fraction to what has been observed over boreal forests. The net deposition flux prevailed even in the absolute cleanest atmospheric conditions during the campaign and therefore cannot be explained only by deposition of anthropogenic particles. The particle transfer velocity v(t) increased with increasing friction velocity and the relation is described by the equation v(t) = 2.4x10(-3)xu(*) where u(*) is the friction velocity. Upward particle fluxes often appeared in the morning hours and seem to a large extent to be an effect of entrainment fluxes into a growing mixed layer rather than primary aerosol emission. In general, the number source of primary aerosol particles within the footprint area of the measurements was small, possibly because the measured particle number fluxes reflect mostly particles less than approximately 200 nm. This is an indication that the contribution of primary biogenic aerosol particles to the aerosol population in the Amazon boundary layer may be low in terms of number concentrations. However, the possibility of horizontal variations in primary aerosol emission over the Amazon rain forest cannot be ruled out.National Institute for Research in the Amazon (INPA)LBA infrastructure teamCNPq/MCT Millennium Institute ProgramFAPES
Manifold design for a marine diesel air intake system
The performance of the air intake system in a diesel engine could limit the overall engine performance. The intake manifold is an important part of the air intake system where enough air should be guided to the cylinder. Compactness is a conflicting feature to performance as engine rooms in general, and thereby engines, should use little space. Thus, the development of an air intake manifold requires knowledge about function and placement of most other parts in the engine so that a compatible and compact air intake manifold can be created. MarineDiesel AB is a Swedish company from Ängelholm developing and manufacturing marine diesel engines. The Master thesis project work has been performed in a real project where an engine, previously used in a train, is converted into a marine engine with twice the power. The engine must be designed to fit with the new requirements of the customer. These requirements directly affect the air intake system which must, as all other engine system, match the desired performance. A well-defined development process with theoretical and practical research together with company guidelines and engineering assessments has generated the concepts in this product development master thesis project. Two different intake manifold concepts have been created. The concepts are different in aspect to both manifold design and air intake system configuration. The air intake system and the manifold are dependent and therefore a feasible system concept has also been developed to each of the concepts. The performance of the concepts has been verified through flow simulation and the development process has secured their feasibility. The focus has been set on creating flexible feasible concepts that are possible to manufacture when adapted to future requirements. This creates the best possible prerequisites of implementation later in the project. In other words, the design limitations should be low in this stage of the project and thus the two final concepts are only conceptual and not ready for production. Worth mentioning is that the OEM manifold capabilities are deemed to be sufficient for implementation with both system concepts, replacing the manifold concep
Outbreak of Puumala Virus Infection, Sweden
An unexpected and large outbreak of Puumala virus infection in Sweden resulted in 313 nephropathia epidemica patients/100,000 persons in Västerbotten County during 2007. An increase in the rodent population, milder weather, and less snow cover probably contributed to the outbreak
Eastern Pacific Emitted Aerosol Cloud Experiment
Aerosol–cloud–radiation interactions are widely held to be the largest single source of uncertainty in climate model projections of future radiative forcing due to increasing anthropogenic emissions. The underlying causes of this uncertainty among modeled predictions of climate are the gaps in our fundamental understanding of cloud processes. There has been significant progress with both observations and models in addressing these important questions but quantifying them correctly is nontrivial, thus limiting our ability to represent them in global climate models. The Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) 2011 was a targeted aircraft campaign with embedded modeling studies, using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft and the research vessel Point Sur in July and August 2011 off the central coast of California, with a full payload of instruments to measure particle and cloud number, mass, composition, and water uptake distributions. EPEACE used three emitted particle sources to separate particle-induced feedbacks from dynamical variability, namely 1) shipboard smoke-generated particles with 0.05–1-μm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke), 2) combustion particles from container ships with 0.05–0.2-μm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components), and 3) aircraft-based milled salt particles with 3–5-μm diameters (which showed enhanced drizzle rates in some clouds). The aircraft observations were consistent with past large-eddy simulations of deeper clouds in ship tracks and aerosol– cloud parcel modeling of cloud drop number and composition, providing quantitative constraints on aerosol effects on warm-cloud microphysics
Manuell markberedning med kultivatoraggregat
The purpose of this work is to chart the spruce plants ability to stay strong against one of the biggest problems connected with reforestation. This is a survey that has been done in order to see if there are other ways to protect the plants from the pine weevil than the conventional alternatives. This survey includes 800 plants that has been planted with different methods in order to chart the extent of damage made from pine weevil.
A literature study has been done and concludes the knowledge about the ecology and biology about the pine weevil, extra focused on the reproduction and the diet. A chapter about how the industry handles the widespread problem primary with treated plants, mostly in combination with some kind of preparation, in this study we have tried a new type of preparation made with a cultivator aggregate and a chainsaw on a manually way.
The conclusions of the study is telling that it is better to use the manually method instead of using nothing at all. With the economic aspect in mind it is also better to do the smaller areas before the bigger, the smaller the better
Nucleation and condensational growth to CCN sizes during a sustained pristine biogenic SOA event in a forested mountain valley
The Whistler Aerosol and Cloud Study (WACS 2010), included intensive measurements of trace gases and particles at two sites on Whistler Mountain. Between 6–11 July 2010 there was a sustained high-pressure system over the region with cloud-free conditions and the highest temperatures of the study. During this period, the organic aerosol concentrations rose from <1 μg m<sup>−3</sup> to &sim;6 μg m<sup>−3</sup>. Precursor gas and aerosol composition measurements show that these organics were almost entirely of secondary biogenic nature. Throughout 6–11 July, the anthropogenic influence was minimal with sulfate concentrations <0.2 μg m<sup>−3</sup> and SO<sub>2</sub> mixing ratios &approx; 0.05–0.1 ppbv. Thus, this case provides excellent conditions to probe the role of biogenic secondary organic aerosol in aerosol microphysics. Although SO<sub>2</sub> mixing ratios were relatively low, box-model simulations show that nucleation and growth may be modeled accurately if <i>J</i><sub>nuc</sub> = 3 × 10<sup>&minus;7</sup>[H<sub>2</sub>SO<sub>4</sub>] and the organics are treated as effectively non-volatile. Due to the low condensation sink and the fast condensation rate of organics, the nucleated particles grew rapidly (2–5 nm h<sup>&minus;1</sup>) with a 10–25% probability of growing to CCN sizes (100 nm) in the first two days as opposed to being scavenged by coagulation with larger particles. The nucleated particles were observed to grow to &sim;200 nm after three days. Comparisons of size-distribution with CCN data show that particle hygroscopicity (&kappa;) was &sim;0.1 for particles larger 150 nm, but for smaller particles near 100 nm the κ value decreased near midway through the period from 0.17 to less than 0.06. In this environment of little anthropogenic influence and low SO<sub>2</sub>, the rapid growth rates of the regionally nucleated particles – due to condensation of biogenic SOA – results in an unusually high efficiency of conversion of the nucleated particles to CCN. Consequently, despite the low SO<sub>2</sub>, nucleation/growth appear to be the dominant source of particle number
- …
