2,489 research outputs found

    Sutte Indicator: an approach to predict the direction of stock market movements

    Get PDF
    The purpose of this research is to apply technical analysis of Sutte Indicator in stock trading which will assist in the investment decision making process i.e. buying or selling shares. This research takes data of "A" on the Indonesia Stock Exchange(IDX or BEI) 29 November 2006 until 20 September 2016 period. To see the performance of Sutte Indicator, other technical analysis are used as a comparison, Simple Moving Average (SMA) and Moving Average Convergence/Divergence (MACD). To see a comparison of the level of reliability prediction, the stock data were compared using the mean absolute deviation (MAD), mean of square error (MSE), and mean absolute percentage error (MAPE). The result of this research is that Sutte Indicator can be used as a reference in predicting stock movements, and if it is compared to other indicator methods (SMA and MACD) via MAD, MSE, and MAPE, the Sutte Indicator has a better level of reliability

    sutteForecastR: Forecasting Data using Alpha-Sutte Indicator

    Get PDF
    The alpha-Sutte indicator (alpha-Sutte) was originally from developed of Sutte indicator. Sutte indicator can using to predict the movement of stocks. As the development of science, then Sutte indicator developed to predict not only the movement of stocks but also can forecast data on financial, insurance, and others time series data. https://cran.r-project.org/web/packages/sutteForecastR/index.htm

    RcmdrPlugin.sutteForecastR: 'Rcmdr' Plugin for Alpha-Sutte Indicator

    Get PDF
    The 'sutteForecastR' is a package of Alpha-Sutte indicator. To make the 'sutteForecastR' user friendly, so we develop an 'Rcmdr' plug-in based on the Alpha-Sutte indicator function. https://cran.r-project.org/web/packages/RcmdrPlugin.sutteForecastR/index.htm

    Profil Tingkat Kreativitas dan Kualitas Pengajuan Masalah Statistika Ditinjau Dari Gaya Kognitif pada Mahasiswa Pendidikan Matematika Angkatan 2014 FMIPA Universitas Negeri Makassar

    Get PDF
    Penelitian ini bertujuan untuk mengungkap profil mengenai tingkat kreativitas dan kemampuan pengajuan masalah statistika pada mahasiswa Pendidikan Matematika Angkatan 2014 Universitas Negeri Makassar ditinjau dari segi gaya kognitifnya. Penelitian ini menggunakan metode kualitatif yang bersifat eksploratif dengan pemberian scaffolding metakognitif pada saat penelitian. Hipotesis penelitian bahwa mahasiswa yang memiliki gaya kognitif field independent (FI) dalam mengajukan masalah statistika dari informasi yang disediakan sudah dapat mengajukan masalah statistika yang dapat diselesaikan dan memuat data baru dan masalah tersebut sudah termasuk masalah statistika yang berkualitas tinggi, sedangkan mahasiswa yang memiliki gaya kognitif field dependent (FD) pada umumnya masalah statistika yang diajukan masih terbatas pada masalah statistika yang dapat diselesaikan dan tidak memuat data baru dan masalah tersebut termasuk masalah statistika yang berkualitas sedang

    PELAKSANAAN PEMBELAJARAN IPA BERBASIS LINGKUNGAN ALAM SEKITAR KELAS III DI SD ISLAM TERPADU IBNU MAS’UD KULON PROGO

    Get PDF
    Penelitian ini bertujuan untuk mendeskripsikan pelaksanaan pembelajaran IPA berbasis lingkungan alam sekitar pada siswa kelas III di SD IT Ibnu Mas’ud Kulon Progo. Penelitian ini menggunakan pendekatan kualitatif dan jenis penelitian deskriptif. Subjek penelitian adalah guru dan siswa kelas III Mina SDIT Ibnu Mas’ud Kecamatan Wates Kabupaten Kulon Progo. Metode pengumpulan data dalam penelitian ini menggunakan teknik observasi, wawancara dan dokumentasi. Instrumen dalam penelitian ini adalah peneliti dan dibantu dengan panduan observasi dan panduan wawancara. Teknik analisis data yang digunakan yaitu data collection (pengumpulan data), reduksi data, penyajian data dan verifikasi/kesimpulan. Hasil penelitian dapat disimpulkan bahwa pelaksanaan pembelajaran IPA berbasis lingkungan alam sekitar di SDIT Ibnu Mas’ud Wates sudah diterapkan dengan baik. Hal tersebut dapat dilihat dari indikator ketercapaian yang dirumuskan dalam RPP dan tujuan pembelajaran disampaikan secara lisan; Materi yang digunakan dalam pembelajaran berbasis lingkungan alam sekitar yaitu materi tentang cuaca dan sumber daya alam. Kedua materi tersebut memanfaatkan lingkungan sekitar sekolah sebagai tempat untuk belajar. Tujuannya yaitu untuk memberikan konsep alam yang nyata terhadap siswa; pemilihan dan penggunaan media pembelajaran disesuaikan dengan materi pembelajaran berbasis lingkungan alam sekitar; metode pembelajaran yang lebih dominan dalam pembelajaran berbasis lingkungan alam sekitar yaitu diskusi dan tanya jawab; siswa dalam mengikuti pembelajaran berbasis lingkungan alam sekitar sangat antusias; penataan lingkungan fisik tempat belajar siswa dilakukan di dalam kelas dan di luar kelas tujuannya yaitu untuk memberikan nuansa yang berbeda dalam pembelajaran; pelaksanaan evaluasi dalam pembelajaran terdiri dari evaluasi proses dan evaluasi hasil

    Forecasting of primary energy consumption data in the United States: A comparison between ARIMA and Holter-Winters models

    Get PDF
    This research has a purpose to compare ARIMA Model and Holt-Winters Model based on MAE, RSS, MSE, and RMS criteria in predicting Primary Energy Consumption Total data in the US. The data from this research ranges from January 1973 to December 2016. This data will be processed by using R Software. Based on the results of data analysis that has been done, it is found that the model of Holt-Winters Additive type (MSE: 258350.1) is the most appropriate model in predicting Primary Energy Consumption Total data in the US. This model is more appropriate when compared with Holt-Winters Multiplicative type (MSE: 262260,4) and ARIMA Seasonal model (MSE: 723502,2)

    Application of machine learning to support self-management of asthma with mHealth

    Get PDF
    While there have been several efforts to use mHealth technologies to support asthma management, none so far offer personalised algorithms that can provide real-time feedback and tailored advice to patients based on their monitoring. This work employed a publicly available mHealth dataset, the Asthma Mobile Health Study (AMHS), and applied machine learning techniques to develop early warning algorithms to enhance asthma self-management. The AMHS consisted of longitudinal data from 5,875 patients, including 13,614 weekly surveys and 75,795 daily surveys. We applied several well-known supervised learning algorithms (classification) to differentiate stable and unstable periods and found that both logistic regression and naïve Bayes-based classifiers provided high accuracy (AUC > 0.87). We found features related to the use of quick-relief puffs, night symptoms, frequency of data entry, and day symptoms (in descending order of importance) as the most useful features to detect early evidence of loss of control. We found no additional value of using peak flow readings to improve population level early warning algorithms

    SuIndiWeb: a web-based platform of sutte indicator to predicting movement of stock

    Get PDF
    Technical Indicator is an approach to analyze the movement of stock. Are this stock will decrease or increase in future? One new indicator that has been developed is Sutte Indicator. Sutte Indicator is an indicator used in Technical Analysis of Stock Market. Sutte Indicator developed by Ansari Saleh Ahmar in December 2015. Sutte Indicator helps in the decision making process for stock investors when they can make a buy or sale of stocks. Sutte Indicator has been implemented in several stocks such as Apple Inc., XL Axiata Tbk and Smartfren Telecom Tbk. To view the reliability in the prediction of Sutte Indicator then it compared with others Technical Analysis that is Simple Moving Average (SMA) and Moving Average Convergence / Divergence (MACD). From the results of this comparison, Sutte Indicator is obtained that has a level of accu-racy that is better than the SMA and MACD. To simplify the process of use of Sutte Indicator, then make a tools on Web-based platform and the named as SuIndiWeb. SuIndiWeb will be used in the process of pre-dicting stock movements

    The Relationship Between Prior Knowledge and Creative Thinking Ability in Chemistry

    Get PDF
    This study aims to determine the relationship between prior knowledge with creative thinking ability of students in grade XI science at public school of Takalar. This research is ex post facto. The population in this research is was all students in grade XI science at public school of Takalar consisting of 39 classes with a total enrollment in 1537 people. Technique collecting sample using stratified purposive random sampling and selected grade XI Science SMAN 1 Takalar, SMAN 3 Takalar, SMAN 1 Polongbangkeng Selatan, and SMAN 3 Polongbangkeng Utara consist of 134 learners. The data was collected by using prior knowledge test consist of 16 items (α = 0.883) and verbal creativity test consist of 18 items (α = 0.808). Data were analyzed using correlation and regression analysis, The coefficient correlation between the two variables is 0.619 with p = 0.000 (p <0.05). This value indicates that there is a relationship between prior knowledge with creative thinking ability in chemistry and relationship between the two variables is a positive relationship

    α-Sutte Indicator: Suatu Pendekan Baru dalam Peramalan Data

    Get PDF
    α-Sutte Indicator (α-Sutte) merupakan pengembangan dari Sutte Indicator. Sutte Indicator dapat digunakan untuk memprediksi pergerakan saham. Sejalan dengan perkembangan ilmu pengetahuan, maka Sutte Indicator kemudian dikembangkan tidak hanya untuk memprediksi pergerakan saham tetapi juga dapat meramalkan data dalam bidang keuangan, asuransi, dan data time series lainnya. Pengembangan dari Sutte Indicator ini kemudian dikenal dengan nama α-Sutte Indicator (α-Sutte). α-Sutte dikembangkan menggunakan prinsip metode peramalan yaitu menggunakan data sebelumnya. α-Sutte diadopsi dari metode moving average. Moving Average yang digunakan adalah Simple Moving Average-2 (SMA2). SMA2 ini digunakan untuk melihat trend data. Selain itu, α-Sutte juga menggunakan 4 data sebelumnya dengan asumsi bahwa 4 data sebelumnya berpengaruh terhadap prediksi data berikutnya
    corecore