187 research outputs found

    Paleovirology: connecting recent and ancient viral evolution

    Get PDF
    Endogenous viral elements, or viral genomic fossils, have proven extremely valuable in the study of the macroevolution of viruses, providing important, and otherwise unobtainable, insights into the ancient origin of viruses, and how their ancestors might have co-evolved with their hosts in the distant past. This type of investigation falls within the realm of paleovirology—the study of ancient viruses. Investigations of extant viruses and paleovirological analyses, however, often give conflicting results, especially those concerning viral evolutionary rates and timescales. Reconciling these two types of analyses is a necessary step towards a better understanding of the overall long-term evolutionary dynamics of viruses. The main study system of this thesis is foamy viruses (FVs). FVs are characterised by their stable co-speciation history with their hosts, allowing their evolutionary dynamics to be modelled and investigated over various timescales. This unique evolutionary feature makes FVs one of the best subjects for connecting recent and ancient viral evolution. The work here reports the discovery of several endogenous mammalian FVs, and examines how mammalian FVs co-evolve with their hosts. Analyses reveal a co-diversifying history of the two that could be dated back to the basal radiation of eutherians more than 100 million years ago. However, a small number of ancient FV cross-species transmissions could still be found, mostly involving New World monkey FVs. Based on this extended FV-mammal co-speciation pattern, this thesis investigates the long-term evolutionary rate dynamics of FVs, and shows that the rate estimates of FV evolution appear to decrease continuously as the rate measurement timescale increases, following a power-law decay function. The work presented here also shows that this so-called 'time-dependent rate phenomenon' is in fact a pervasive evolutionary feature of all viruses, and surprisingly, the rate estimates of evolution of all viruses seem to decay at the same speed, decreasing by approximately half for every 3-fold increase in the measurement timescale. Based on this power-law rate-decay pattern, we could infer evolutionary timescales of modern-day lentiviruses that are consistent with paleovirological analyses for the first time. Finally, this thesis reports the discovery of basal FV-like endogenous retroviruses (FLERVs) in amphibian and fish genomes. Phylogenetic analyses reveal that the progenitors of ray-finned fish FLERVs co-diversify broadly with their fish hosts, but also suggest that there might have been several ancient viral cross-class transmissions, involving lobe-finned fish, shark, and frog FLERVs. Again, by using the power-law rate-decay model, analyses in this thesis suggest that this major retroviral clade has an ancient Ordovician marine origin, originating together with their jawed vertebrate hosts more than 450 million years ago. This finding implies that the origin of retroviruses as a whole must be in the early Paleozoic Era, if not earlier. The results presented here bridge ancient and recent viral evolution

    Virus classification - where do you draw the line?

    Get PDF
    High-throughput sequencing (HTS) and its use in recovering and assembling novel virus sequences from environmental, human clinical, veterinary and plant samples has unearthed a vast new catalogue of viruses. Their classification, known by their sequences alone, sets a major challenge to traditional virus taxonomy, especially at the family and species levels, which have been historically based largely on descriptive taxon definitions. These typically entail some knowledge of their phenotypic properties, including replication strategies, virion structure and clinical and epidemiological features, such as host range, geographical distribution and disease outcomes. Little to no information on these attributes is available, however, for viruses identified in metagenomic datasets. If such viruses are to be included in virus taxonomy, their assignments will have to be guided largely or entirely by metrics of genetic relatedness. The immediate problem here is that the International Committee on Taxonomy of Viruses (ICTV), an organisation that authorises the taxonomic classification of viruses, provides little or no guidance on how similar or how divergent viruses must be in order to be considered members of new species or new families. We have recently developed a method for scoring genomic (dis)similarity between viruses (Genome Relationships Applied to Virus Taxonomy - GRAViTy) among the eukaryotic and prokaryotic viruses currently classified by the ICTV. At the family and genus levels, we found large-scale consistency between genetic relationships and their taxonomic assignments for eukaryotic viruses of all genome configurations and genome sizes. Family assignments of prokaryotic viruses have, however, been made at a quite different genetic level, and groupings currently classified as sub-families are a much better match to the eukaryotic virus family level. These findings support the ongoing reorganisation of bacteriophage taxonomy by the ICTV Phage Study Group. A rapid and objective means to explore metagenomic viral diversity and make evidence-based assignments for such viruses at each taxonomic layer is essential. Analysis of sequences by GRAViTy provides evidence that family (and genus) assignments of currently classified viruses are largely underpinned by genomic relatedness, and these features could serve as a guide towards an evidence-based classification of metagenomic viruses in the future

    GRAViTy-V2: a grounded viral taxonomy application

    Get PDF
    Taxonomic classification of viruses is essential for understanding their evolution. Genomic classification of viruses at higher taxonomic ranks, such as order or phylum, is typically based on alignment and comparison of amino acid sequence motifs in conserved genes. Classification at lower taxonomic ranks, such as genus or species, is usually based on nucleotide sequence identities between genomic sequences. Building on our whole-genome analytical classification framework, we here describe Genome Relationships Applied to Viral Taxonomy Version 2 (GRAViTy-V2), which encompasses a greatly expanded range of features and numerous optimisations, packaged as an application that may be used as a general-purpose virus classification tool. Using 28 datasets derived from the ICTV 2022 taxonomy proposals, GRAViTy-V2 output was compared against human expert-curated classifications used for assignments in the 2023 round of ICTV taxonomy changes. GRAViTy-V2 produced taxonomies equivalent to manually-curated versions down to the family level and in almost all cases, to genus and species levels. The majority of discrepant results arose from errors in coding sequence annotations in INDSC records, or from inclusion of incomplete genome sequences in the analysis. Analysis times ranged from 1-506 min (median 3.59) on datasets with 17-1004 genomes and mean genome length of 3000–1 000 000 bases

    Bayesian inference of evolutionary histories under time-dependent substitution rates

    Get PDF
    Many factors complicate the estimation of time scales for phylogenetic histories, requiring increasingly complex evolutionary models and inference procedures. The widespread application of molecular clock dating has led to the insight that evolutionary rate estimates may vary with the time frame of measurement. This is particularly well established for rapidly evolving viruses that can accumulate sequence divergence over years or even months. However, this rapid evolution stands at odds with a relatively high degree of conservation of viruses or endogenous virus elements over much longer time scales. Building on recent insights into time-dependent evolutionary rates, we develop a formal and flexible Bayesian statistical inference approach that accommodates rate variation through time. We evaluate the novel molecular clock model on a foamy virus cospeciation history and a lentivirus evolutionary history and compare the performance to other molecular clock models. For both virus examples, we estimate a similarly strong time-dependent effect that implies rates varying over four orders of magnitude. The application of an analogous codon substitution model does not implicate long-term purifying selection as the cause of this effect. However, selection does appear to affect divergence time estimates for the less deep evolutionary history of the Ebolavirus genus. Finally, we explore the application of our approach on woolly mammoth ancient DNA data, which shows a much weaker, but still important, time-dependent rate effect that has a noticeable impact on node age estimates. Future developments aimed at incorporating more complex evolutionary processes will further add to the broad applicability of our approach.status: publishe

    Novel Denisovan and Neanderthal Retroviruses

    Get PDF
    Following the recent availability of high-coverage genomes for Denisovan and Neanderthal hominids, we conducted a screen for endogenized retroviruses, identifying six novel, previously unreported HERV-K(HML2) elements (HERV-K is human endogenous retrovirus K). These elements are absent from the human genome (hg38) and appear to be unique to archaic hominids. These findings provide further evidence supporting the recent activity of the HERV-K(HML2) group, which has been implicated in human disease. They will also provide insights into the evolution of archaic hominids

    The molecular epidemiology of HIV-1 in the Comunidad Valenciana (Spain): analysis of transmission clusters

    Get PDF
    HIV infections are still a very serious concern for public heath worldwide. We have applied molecular evolution methods to study the HIV-1 epidemics in the Comunidad Valenciana (CV, Spain) from a public health surveillance perspective. For this, we analysed 1804 HIV-1 sequences comprising protease and reverse transcriptase (PR/RT) coding regions, sampled between 2004 and 2014. These sequences were subtyped and subjected to phylogenetic analyses in order to detect transmission clusters. In addition, univariate and multinomial comparisons were performed to detect epidemiological differences between HIV-1 subtypes, and risk groups. The HIV epidemic in the CV is dominated by subtype B infections among local men who have sex with men (MSM). 270 transmission clusters were identified (>57% of the dataset), 12 of which included ≥10 patients; 11 of subtype B (9 affecting MSMs) and one (n = 21) of CRF14, affecting predominately intravenous drug users (IDUs). Dated phylogenies revealed these large clusters to have originated from the mid-80s to the early 00 s. Subtype B is more likely to form transmission clusters than non-B variants and MSMs to cluster than other risk groups. Multinomial analyses revealed an association between non-B variants, which are not established in the local population yet, and different foreign groups

    Wide distribution and ancient evolutionary history of simian foamy viruses in New World primates

    Full text link
    BACKGROUND: Although simian foamy viruses (SFV) are the only exogenous retroviruses to infect New World monkeys (NWMs), little is known about their evolutionary history and epidemiology. Previous reports show distinct SFVs among NWMs but were limited to small numbers of captive or wild monkeys from five (Cebus, Saimiri, Ateles, Alouatta, and Callithrix) of the 15 NWM genera. Other studies also used only PCR testing or serological assays with limited validation and may have missed infection in some species. We developed and validated new serological and PCR assays to determine the prevalence of SFV in blood specimens from a large number of captive NWMs in the US (n = 274) and in captive and wild-caught NWMs (n = 236) in Peruvian zoos, rescue centers, and illegal trade markets. Phylogenetic and co-speciation reconciliation analyses of new SFV polymerase (pol) and host mitochondrial cytochrome B sequences, were performed to infer SFV and host co-evolutionary histories. RESULTS: 124/274 (45.2 %) of NWMs captive in the US and 59/157 (37.5 %) of captive and wild-caught NWMs in Peru were SFV WB-positive representing 11 different genera (Alouatta, Aotus, Ateles, Cacajao, Callithrix, Cebus, Lagothrix, Leontopithecus, Pithecia, Saguinus and Saimiri). Seroprevalences were lower at rescue centers (10/53, 18.9 %) compared to zoos (46/97, 47.4 %) and illegal trade markets (3/7, 8/19, 42.9 %) in Peru. Analyses showed that the trees of NWM hosts and SFVs have remarkably similar topologies at the level of species and sub-populations suggestive of co-speciation. Phylogenetic reconciliation confirmed 12 co-speciation events (p < 0.002) which was further supported by obtaining highly similar divergence dates for SFV and host genera and correlated SFV-host branch times. However, four ancient cross-genus transmission events were also inferred for Pitheciinae to Atelidae, Cacajao to ancestral Callithrix or Cebus monkeys, between Callithrix and Cebus monkeys, and Lagothrix to Alouatta. CONCLUSIONS: We demonstrate a broad distribution and stable co-speciation history of SFV in NWMs at the species level. Additional studies are necessary to further explore the epidemiology and natural history of SFV infection of NWMs and to determine the zoonotic potential for persons exposed to infected monkeys in captivity and in the wild. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12977-015-0214-0) contains supplementary material, which is available to authorized users

    Analysis of spounaviruses as a case study for the overdue reclassification of tailed phages

    Get PDF
    Tailed bacteriophages are the most abundant and diverse viruses in the world, with genome sizes ranging from 10 kbp to over 500 kbp. Yet, due to historical reasons, all this diversity is confined to a single virus order-Caudovirales, composed of just four families: Myoviridae, Siphoviridae, Podoviridae, and the newly created Ackermannviridae family. In recent years, this morphology-based classification scheme has started to crumble under the constant flood of phage sequences, revealing that tailed phages are even more genetically diverse than once thought. This prompted us, the Bacterial and Archaeal Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV), to consider overall reorganization of phage taxonomy. In this study, we used a wide range of complementary methods-including comparative genomics, core genome analysis, and marker gene phylogenetics-to show that the group of Bacillus phage SPO1-related viruses previously classified into the Spounavirinae subfamily, is clearly distinct from other members of the family Myoviridae and its diversity deserves the rank of an autonomous family. Thus, we removed this group from the Myoviridae family and created the family Herelleviridae-a new taxon of the same rank. In the process of the taxon evaluation, we explored the feasibility of different demarcation criteria and critically evaluated the usefulness of our methods for phage classification. The convergence of results, drawing a consistent and comprehensive picture of a new family with associated subfamilies, regardless of method, demonstrates that the tools applied here are particularly useful in phage taxonomy. We are convinced that creation of this novel family is a crucial milestone toward much-needed reclassification in the Caudovirales order.Peer reviewe
    corecore