113 research outputs found

    Repercussion of megakaryocyte-specific Gata1 Loss on megakaryopoiesis and the hematopoietic precursor compartment

    Get PDF
    During hematopoiesis, transcriptional programs are essential for the commitment and differentiation of progenitors into the different blood lineages. GATA1 is a transcription factor expressed in several hematopoietic lineages and essential for proper erythropoiesis and megakaryopoiesis. Megakaryocyte-specific genes, such as GP1BA, are known to be directly regulated by GATA1. Mutations in GATA1 can lead to dyserythropoietic anemia and pseudo gray-platelet syndrome. Selective loss of Gata1 expression in adult mice results in macrothrombocytopenia with platelet dysfunction, characterized by an excess of immature megakaryocytes. To specifically analyze the impact of Gata1 loss in mature committed megakaryocytes, we generated Gata1-Lox|Pf4-Cre mice (Gata1cKOMK). Consistent with previous findings, Gata1cKOMK mice are macrothrombocytopenic with platelet dysfunction. Supporting this notion we demonstrate that Gata1 regulates directly the transcription of Syk, a tyrosine kinase that functions downstream of Clec2 and GPVI receptors in megakaryocytes and platelets. Furthermore, we show that Gata1cKOMK mice display an additional aberrant megakaryocyte differentiation stage. Interestingly, these mice present a misbalance of the multipotent progenitor compartment and the erythroid lineage, which translates into compensatory stress erythropoiesis and splenomegaly. Despite the severe thrombocytopenia, Gata1cKOMK mice display a mild reduction of TPO plasma levels, and Gata1cK-OMK megakaryocytes show a mild increase in Pf4 mRNA levels; such a misbalance might be behind the general hematopoietic defects observed, affecting locally normal TPO and Pf4 levels at hematopoietic stem cell niches. © 2016 Meinders et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Endothelial dysfunction and diabetes: roles of hyperglycemia, impaired insulin signaling and obesity

    Get PDF

    Multiple effects of toxins isolated from Crotalus durissus terrificus on the hepatitis C virus life cycle

    Get PDF
    Hepatitis C virus (HCV) is one of the main causes of liver disease and transplantation worldwide. Current therapy is expensive, presents additional side effects and viral resistance has been described. Therefore, studies for developing more efficient antivirals against HCV are needed. Compounds isolated from animal venoms have shown antiviral activity against some viruses such as Dengue virus, Yellow fever virus and Measles virus. In this study, we evaluated the effect of the complex crotoxin (CX) and its subunits crotapotin (CP) and phospholipase A2 (PLA2-CB) isolated from the venom of Crotalus durissus terrificus on HCV life cycle. Huh 7.5 cells were infected with HCVcc JFH-1 strain in the presence or absence of these toxins and virus was titrated by focus formation units assay or by qPCR. Toxins were added to the cells at different time points depending on the stage of virus life cycle to be evaluated. The results showed that treatment with PLA2-CB inhibited HCV entry and replication but no effect on HCV release was observed. CX reduced virus entry and release but not replication. By treating cells with CP, an antiviral effect was observed on HCV release, the only stage inhibited by this compound. Our data demonstrated the multiple antiviral effects of toxins from animal venoms on HCV life cycle

    Introduction of an agent-based multi-scale modular architecture for dynamic knowledge representation of acute inflammation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>One of the greatest challenges facing biomedical research is the integration and sharing of vast amounts of information, not only for individual researchers, but also for the community at large. Agent Based Modeling (ABM) can provide a means of addressing this challenge via a unifying translational architecture for dynamic knowledge representation. This paper presents a series of linked ABMs representing multiple levels of biological organization. They are intended to translate the knowledge derived from in vitro models of acute inflammation to clinically relevant phenomenon such as multiple organ failure.</p> <p>Results and Discussion</p> <p>ABM development followed a sequence starting with relatively direct translation from in-vitro derived rules into a cell-as-agent level ABM, leading on to concatenated ABMs into multi-tissue models, eventually resulting in topologically linked aggregate multi-tissue ABMs modeling organ-organ crosstalk. As an underlying design principle organs were considered to be functionally composed of an epithelial surface, which determined organ integrity, and an endothelial/blood interface, representing the reaction surface for the initiation and propagation of inflammation. The development of the epithelial ABM derived from an in-vitro model of gut epithelial permeability is described. Next, the epithelial ABM was concatenated with the endothelial/inflammatory cell ABM to produce an organ model of the gut. This model was validated against in-vivo models of the inflammatory response of the gut to ischemia. Finally, the gut ABM was linked to a similarly constructed pulmonary ABM to simulate the gut-pulmonary axis in the pathogenesis of multiple organ failure. The behavior of this model was validated against in-vivo and clinical observations on the cross-talk between these two organ systems</p> <p>Conclusion</p> <p>A series of ABMs are presented extending from the level of intracellular mechanism to clinically observed behavior in the intensive care setting. The ABMs all utilize cell-level agents that encapsulate specific mechanistic knowledge extracted from in vitro experiments. The execution of the ABMs results in a dynamic representation of the multi-scale conceptual models derived from those experiments. These models represent a qualitative means of integrating basic scientific information on acute inflammation in a multi-scale, modular architecture as a means of conceptual model verification that can potentially be used to concatenate, communicate and advance community-wide knowledge.</p

    Toward an operative diagnosis in sepsis: a latent class approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent data have suggested that 18 million of new sepsis cases occur each year worldwide, with a mortality rate of almost 30%. There is not consensus on the clinical definition of sepsis and, because of lack of training or simply unawareness, clinicians often miss or delay this diagnosis. This is especially worrying; since there is strong evidence supporting that early treatment is associated with greater clinical success. There are some difficulties for sepsis diagnosis such as the lack of an appropriate gold standard to identify this clinical condition. This situation has hampered the assessment of the accuracy of clinical signs and biomarkers to diagnose sepsis.</p> <p>Methods/design</p> <p>Cross-sectional study to determine the operative characteristics of three biological markers of inflammation and coagulation (D-dimer, C-reactive protein and Procalcitonin) as diagnostic tests for sepsis, in patients admitted to hospital care with a presumptive infection as main diagnosis.</p> <p>Discussion</p> <p>There are alternative techniques that have been used to assess the accuracy of tests without gold standards, and they have been widely used in clinical disciplines such as psychiatry, even though they have not been tested in sepsis diagnosis. Considering the main importance of diagnosis as early as possible, we propose a latent class analysis to evaluate the accuracy of three biomarkers to diagnose sepsis.</p

    Extravascular Lung Water Correlates Multiorgan Dysfunction Syndrome and Mortality in Sepsis

    Get PDF
    BACKGROUND: This study was designated to investigate whether increased extravascular lung water index (EVLWI) may correlate multiple organ dysfunction syndrome (MODS) and mortality in sepsis. METHODS: We designed a prospective cohort study in an intensive care unit of a tertiary care hospital. Sixty-seven patients with severe sepsis were included. Data were used to determine an association between EVLWI and the development of MODS and mortality. These connections were determined by the multiple logistic regression, plotting the receiver operating characteristic (ROC) curve and by Spearman test. RESULTS: EVLWI levels were higher in MODS patients on day 1 (median (IQR), 18(12.8-23.9) ml/kg, n = 38, p<0.0001) than in those without (median (IQR), 12.4 (7.9-16.3) ml/kg, n = 29) and day 3 (median (IQR), 17.8 (11.2-22.8) ml/kg, n = 29, p = 0.004) than in those without (median (IQR), 12.4 (8.0-16.3) ml/kg, n = 29). EVLWI was used as an independent predictor of the development of MODS (odds ratio, 1.6; p = 0.005; 95% confidence interval, 1.2∼2.2) during ICU stay. The area under the ROC curve showed that EVLWI levels could predict MODS (0.866) and mortality (0.881) during ICU stay. Meanwhile, the higher of SOFA score, the more EVLWI was found on day 1 (r = 0.7041, p<0.0001) and day 3 (r = 0.7732, p<0.0001). CONCLUSIONS: Increased EVLWI levels correlates development of MODS and mortality during the patients' ICU stay. Further more, the potential of novel treatment in severe sepsis with lung injury may develop

    The prevalence of anemia and its association with 90-day mortality in hospitalized community-acquired pneumonia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevalence of anemia in the intensive care unit is well-described. Less is known, however, of the prevalence of anemia in hospitalized patients with lesser illness severity or without organ dysfunction. Community-acquired pneumonia (CAP) is one of the most frequent reasons for hospitalization in the United States (US), affecting both healthy patients and those with comorbid illness, and is typically not associated with acute blood loss. Our objective was to examine the development and progression of anemia and its association with 90d mortality in 1893 subjects with CAP presenting to the emergency departments of 28 US academic and community hospitals.</p> <p>Methods</p> <p>We utilized hemoglobin values obtained for clinical purposes, classifying subjects into categories consisting of no anemia (hemoglobin >13 g/dL), at least borderline (≤ 13 g/dL), at least mild (≤ 12 g/dL), at least moderate (≤ 10 g/dL), and severe (≤ 8 g/dL) anemia. We stratified our results by gender, comorbidity, ICU admission, and development of severe sepsis. We used multivariable logistic regression to determine factors independently associated with the development of moderate to severe anemia and to examine the relationship between anemia and 90d mortality.</p> <p>Results</p> <p>A total of 8240 daily hemoglobin values were measured in 1893 subjects. Mean (SD) number of hemoglobin values per patient was 4.4 (4.0). One in three subjects (33.9%) had at least mild anemia at presentation, 3 in 5 (62.1%) were anemic at some point during their hospital stay, and 1 in 2 (54.5%) survivors were discharged from the hospital anemic. Anemia increased with illness severity and was more common in those with comorbid illnesses, female gender, and poor outcomes. Yet, even among men and in those with no comorbidity or only mild illness, anemia during hospitalization was common (~55% of subjects). When anemia was moderate to severe (≤ 10 g/dL), its development was independently associated with increased 90d mortality, even among hospital survivors.</p> <p>Conclusions</p> <p>Anemia was common in hospitalized CAP and independently associated with 90d mortality when hemoglobin values were 10 g/dL or less. Whether prevention or treatment of CAP-associated anemia would improve clinical outcomes remains to be seen.</p

    Physiological roles for ecto-5’-nucleotidase (CD73)

    Get PDF
    Nucleotides and nucleosides influence nearly every aspect of physiology and pathophysiology. Extracellular nucleotides are metabolized through regulated phosphohydrolysis by a series of ecto-nucleotidases. The formation of extracellular adenosine from adenosine 5’-monophosphate is accomplished primarily through ecto-5’-nucleotidase (CD73), a glycosyl phosphatidylinositol-linked membrane protein found on the surface of a variety of cell types. Recent in vivo studies implicating CD73 in a number of tissue protective mechanisms have provided new insight into its regulation and function and have generated considerable interest. Here, we review contributions of CD73 to cell and tissue stress responses, with a particular emphasis on physiologic responses to regulated CD73 expression and function, as well as new findings utilizing Cd73-deficient animals

    Prediction of cis-regulatory elements controlling genes differentially expressed by retinal and choroidal vascular endothelial cells

    Get PDF
    Cultured endothelial cells of the human retina and choroid demonstrate distinct patterns of gene expression. We hypothesized that differential gene expression reflected differences in the interactions of transcription factors and respective cis-regulatory motifs(s) in these two endothelial cell subpopulations, recognizing that motifs often exist as modules. We tested this hypothesis in silico by using TRANSFAC Professional and CisModule to identify cis-regulatory motifs and modules in genes that were differentially expressed by human retinal versus choroidal endothelial cells, as identified by analysis of a microarray data set. Motifs corresponding to eight transcription factors were significantly (p < 0.05) differentially abundant in genes that were relatively highly expressed in retinal (i.e., glucocorticoid receptor, high mobility group AT-hook 1, heat shock transcription factor 1, p53, vitamin D receptor) or choroidal (i.e., transcription factor E2F, Yin Yang 1, zinc finger 5) endothelial cells. Predicted cis-regulatory modules were quite different for these two groups of genes. Our findings raise the possibility of exploiting specific cis-regulatory motifs to target therapy at the ocular endothelial cells subtypes responsible for neovascular age-related macular degeneration or proliferative diabetic retinopathy
    corecore