121 research outputs found
New Approaches to Sample Preparation and Integrated Spectroscopic Methods for The Identification of Polioxyethylene Triolate Sorbitane for Pharmaceutical Examination of Drugs
Due to the fast pace of development of spectroscopic research methods in the pharmaceutical expertise of drugs presented in the United States Pharmacopeia (USP) and European Pharmacopoeia (Ph. Eur.), in this paper, we examined complex methods for the identification and preparation for analysis of polyethylene sorbitan trioleate. Two new systems were identified for purification of 98% polyoxyethylene sorbitan trioleate from organic impurities in column chromatography: acetonitrile 100% and acetonitrile/acetone 7.5/2.5. It was also revealed that a chamber with metallic iodine was the most suitable for selecting an eluent and controlling the cleaning by the TLC method. Proton NMR did not detect organic impurities. Identification of polyoxyethylene sorbitan trioleate was carried out on H1, C13, COSY, and IR spectra. These research methods are characterized by simplicity in sample preparation, the availability of reagents, the effectiveness of identification and quantification analyzes, and the efficiency in labor and material cost
Irradiation Stability of Carbon Nanotubes
Ion irradiation of carbon nanotubes is a tool that can be used to achieve modification of the structure. Irradiation stability of carbon nanotubes was studied by ion and electron bombardment of the samples. Different ion species at various energies were used in experiments, and several defect characterization techniques were applied to characterize the damage.
Development of dimensional changes of carbon nanotubes in microscopes operated at accelerating voltages of 30 keV revealed that binding energy of carbon atoms in CNs is much lower than in bulk materials. Resistivity measurements during irradiation demonstrated existence of a quasi state of defect creation. Linear relationship between ID/IG ratio and increasing irradiation fluence was revealed by Raman spectroscopy study of irradiated carbon buckypapers. The deviations from linear relationship were observed for the samples irradiated to very high fluence values. Annealing of irradiated samples was able to reduce the value of ID/IG ratio and remove defects. However, annealing could not affect ID/IG ratio and remove defects in amorphized samples. The extracted value of activation energy for irradiated sample was 0.36 ±0.05 eV. The value of activation energy was in good agreement with theoretical studies
Irradiation Stability of Carbon Nanotubes and Related Materials
Application of carbon nanotubes (CNTs) in various fields demands a thorough investigation of their stability under irradiation. Open structure, ability to reorganize and heal defects, and large surface-to-volume ratio of carbon nanotubes affect materials' radiation response so that it differs from their bulk counterparts. Despite the work conducted to this date, radiation damage and mechanisms governing the evolution of CNTs under irradiation are still deficient in fundamental understanding.
This dissertation is aimed to comprehend and characterize radiation response and crystalline-to-amorphous transition in ion and electron irradiated carbon nanotubes using various techniques, including but not limited to, transmission electron microscopy (TEM) and Raman spectroscopy. It shows that ion irradiation can be used to engineer properties of nanotubes in a controllable manner and significantly improve thermal diffusivity and conductivity of the material. This work also establishes the role of nuclear and electronic stopping powers in thermal diffusivity enhancement: thermal properties of irradiated CNTs are governed by nuclear stopping power of bombarding species. The change of thermal properties with irradiation is driven by two competing mechanisms: inter-tube displacement-mediated phonon transport and defect-induced phonon scattering. In addition to experiments, molecular dynamic simulations are used to confirm validity of the obtained results.
Radiation damage in CNTs at various temperatures as a function of ion energy, flux and fluence is examined. Mechanisms governing crystalline-to-amorphous transition under electron and ion irradiations are explored, applicability of previously suggested models discussed, and new models introduced. The results show enhanced defect annealing at elevated irradiation temperatures, which delays the formation of amorphous regions. Investigation of nanotube stability after various processing techniques and irradiation indicated that radiation response of CNTs in a composite is similar to that of individual nanotubes
Phonon transport assisted by inter-tube carbon displacements in carbon nanotube mats
Thermal transport in carbon nanotube (CNT) mats, consisting of randomly networked multi-walled carbon nanotubes (MWNTs), is not as efficient as in an individual CNT because of the constrained tube-to-tube phonon transport. Through experiments and modeling, we discover that phonon transport in CNT mats is significantly improved by ion irradiation, which introduces inter-tube displacements, acting as stable point contacts between neighboring tubes. Inter-tube displacement-mediated phonon transport enhances conductivity, while inter-tube phonon-defect scattering reduces conductivity. At low ion irradiation fluence, inter-tube thermal transport enhancement leads to thermal conductivity increase by factor > 5, while at high ion irradiation fluence point defects within tubes cause a decrease in thermal conductivity. Molecular dynamics simulations support the experimentally obtained results and the proposed mechanisms. Further conductivity enhancement in irradiated mats was obtained by post-irradiation heat treatment that removes majority of the defects within the tubes without affecting thermally stable inter-tube displacements
Recommended from our members
A Novel Zr-1Nb Alloy and a New Look at Hydriding
A novel Zr-1Nb has begun development based on a working model that takes into account the hydrogen permeabilities for zirconium and niobium metals. The beta-Nb secondary phase particles (SPPs) in Zr-1Nb are believed to promote more rapid hydrogen dynamics in the alloy in comparison to other zirconium alloys. Furthermore, some hydrogen release is expected at the lower temperatures corresponding to outages when the partial pressure of H2 in the coolant is less. These characteristics lessen the negative synergism between corrosion and hydriding that is otherwise observed in cladding alloys without niobium. In accord with the working model, development of nanoscale precursors was initiated to enhance the performance of existing Zr-1Nb alloys. Their characteristics and properties can be compared to oxide-dispersion strengthened alloys, and material additions have been proposed to zirconium-based LWR cladding to guard further against hydriding and to fix the size of the SPPs for microstructure stability enhancements. A preparative route is being investigated that does not require mechanical alloying, and 10 nanometer molybdenum particles have been prepared which are part of the nanoscale precursors. If successful, the approach has implications for long term dry storage of used fuel and for new routes to nanoferritic and ODS alloys
EVALUATING THE EFFECTIVENESS OF PUBLIC-PRIVATE PARTNERSHIP PROJECTS BASED ON THE HIERARCHY ANALYSIS METHOD
Mitigating the Substrate Effect on Two-Dimensional Molybdenum Disulfide: The Case of Lattice Contraction/Expansion.
- …
