77 research outputs found
Selective Liquid-Phase Oxidation of Toluene with Molecular Oxygen Catalyzed by Mn3O4 Nanoparticles Immobilized on CNTs under Solvent-Free Conditions
The catalytic performance of Mn3O4 supported on carbon nanotubes (CNTs) in the liquid-phase oxidation of toluene to benzyl alcohol and benzaldehyde was studied. The supported catalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption isotherms and ICP-MS. The results demonstrate that Mn3O4 nanoparticles loaded on CNTs performed better compared with pristine Mn3O4 or CNTs. The main reason for the increased catalytic activity is the dispersion and loading of Mn3O4 in CNTs. By optimizing the reaction temperature, reaction time, catalyst quality, oxygen flow rate and initiator dosage, the optimum reaction conditions were obtained. Using tert-butyl hydroperoxide (TBHP) as the initiator and oxygen as the oxidant, the toluene conversion rate was as high as 24.63%, and benzyl alcohol and benzaldehyde selectivity was 90.49%. The good stability of the catalyst was confirmed by repeating the experiment for four cycles and observing no significant changes in its performance
Investigation of the Hβ Molecular Sieve Inactivation Caused by Reactants and Products and Improvement of Continuous Thiophene Acylation
In this paper, the factors leading to the inactivation of the molecular sieve are explored in the batch thiophene (TH) acylation. The coexistence of acetic anhydride (AC) as the reactant and 2-acetylthiophene (2-ATH) as the product plays a key role in accelerating the inactivation, attributing to the 2-ATH polymerization. According to the molecular simulation, when AC is not present, the energy barrier of 2-ATH polymerization can be reduced from 287.45 kJ/mol to 85.87 kJ/mol. Then, the process of the continuous TH acylation is improved, in which thiophene is excessive (molar ratio). After optimizing the molar ratio and volume flowrate of raw material, the productivity of the catalyst can reach 21.56 g/g, which exceeds the best process previously studied (15.10 g/g). Subsequently, the use of carbon tetrachloride (CT) as a solvent is further studied, hoping to further improve the performance of the catalyst, and a significant advancement is achieved, in which the production capacity of the catalyst exceeds 45 g, and the conversion rate of AC can still be as high as 96% after the reaction is carried out for 15,000 min
Investigation of the Hβ Molecular Sieve Inactivation Caused by Reactants and Products and Improvement of Continuous Thiophene Acylation
In this paper, the factors leading to the inactivation of the molecular sieve are explored in the batch thiophene (TH) acylation. The coexistence of acetic anhydride (AC) as the reactant and 2-acetylthiophene (2-ATH) as the product plays a key role in accelerating the inactivation, attributing to the 2-ATH polymerization. According to the molecular simulation, when AC is not present, the energy barrier of 2-ATH polymerization can be reduced from 287.45 kJ/mol to 85.87 kJ/mol. Then, the process of the continuous TH acylation is improved, in which thiophene is excessive (molar ratio). After optimizing the molar ratio and volume flowrate of raw material, the productivity of the catalyst can reach 21.56 g/g, which exceeds the best process previously studied (15.10 g/g). Subsequently, the use of carbon tetrachloride (CT) as a solvent is further studied, hoping to further improve the performance of the catalyst, and a significant advancement is achieved, in which the production capacity of the catalyst exceeds 45 g, and the conversion rate of AC can still be as high as 96% after the reaction is carried out for 15,000 min.</jats:p
Selective Liquid-Phase Oxidation of Toluene with Molecular Oxygen Catalyzed by Mn3O4 Nanoparticles Immobilized on CNTs under Solvent-Free Conditions
The catalytic performance of Mn3O4 supported on carbon nanotubes (CNTs) in the liquid-phase oxidation of toluene to benzyl alcohol and benzaldehyde was studied. The supported catalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), N2 adsorption–desorption isotherms and ICP-MS. The results demonstrate that Mn3O4 nanoparticles loaded on CNTs performed better compared with pristine Mn3O4 or CNTs. The main reason for the increased catalytic activity is the dispersion and loading of Mn3O4 in CNTs. By optimizing the reaction temperature, reaction time, catalyst quality, oxygen flow rate and initiator dosage, the optimum reaction conditions were obtained. Using tert-butyl hydroperoxide (TBHP) as the initiator and oxygen as the oxidant, the toluene conversion rate was as high as 24.63%, and benzyl alcohol and benzaldehyde selectivity was 90.49%. The good stability of the catalyst was confirmed by repeating the experiment for four cycles and observing no significant changes in its performance.</jats:p
Entransy dissipation analysis of interfacial convection enhancing gas–liquid mass transfer process based on field synergy principle
Carboxylate-Assisted Carboxylation of Thiophene with CO2 in the Solvent-Free Carbonate Medium
Direct carboxylation of thiophene with CO2 has been achieved under a relatively mild solvent-free carbonate and carboxylate medium. This base-mediated medium can cleave the very weakly acidic C–H bond without using other limiting reagents, which is one indispensable step in the carboxylation reaction. Product yield varies with different carboxylate salts, and cesium pivalate is the most suitable base additive among targeted simple carboxylate salts. Furthermore, the detailed mechanism of this carboxylation reaction is studied, which involves initial proton abstraction, rendered by carbonate and C–C bond formation, by inserting CO2. The activation energy barrier of the C–H activation step is higher than the following CO2 insertion step, whether for the formation of the mono- and/or di-carboxylate, which indicates that the C–H deprotonation induced by the base is slow and the resulting carbon-centered nucleophile reacts rapidly with CO2.</jats:p
Controlled synthesis of CuxMn3.66−xMo3O12 with the citrate sol–gel method for the selective liquid-phase toluene oxidation to benzaldehyde by air
Separation of n-heptane/isobutanol via eco-efficient vapor recompression-assisted distillation: process optimization and control strategy
- …
