1,336 research outputs found

    Intrinsic carrier mobility of multi-layered MoS2_2 field-effect transistors on SiO2_2

    Full text link
    By fabricating and characterizing multi-layered MoS2_2-based field-effect transistors (FETs) in a four terminal configuration, we demonstrate that the two terminal-configurations tend to underestimate the carrier mobility μ\mu due to the Schottky barriers at the contacts. For a back-gated two-terminal configuration we observe mobilities as high as 125 cm2^2V1^{-1}s1^{-1} which is considerably smaller than 306.5 cm2^2V1^{-1}s1^{-1} as extracted from the same device when using a four-terminal configuration. This indicates that the intrinsic mobility of MoS2_2 on SiO2_2 is significantly larger than the values previously reported, and provides a quantitative method to evaluate the charge transport through the contacts.Comment: 8 pages, 5 figures, typos fixed, and references update

    Frequency- and electric-field-dependent conductivity of single-walled carbon nanotube networks of varying density

    Full text link
    We present measurements of the frequency and electric field dependent conductivity of single walled carbon nanotube(SWCNT) networks of various densities. The ac conductivity as a function of frequency is consistent with the extended pair approximation model and increases with frequency above an onset frequency ω0\omega_0 which varies over seven decades with a range of film thickness from sub-monolayer to 200 nm. The nonlinear electric field-dependent DC conductivity shows strong dependence on film thickness as well. Measurement of the electric field dependence of the resistance R(E) allows for the determination of a length scale LEL_{E} possibly characterizing the distance between tube contacts, which is found to systematically decrease with increasing film thickness. The onset frequency ω0\omega_0 of ac conductivity and the length scale LEL_{E} of SWCNT networks are found to be correlated, and a physically reasonable empirical formula relating them has been proposed. Such studies will help the understanding of transport properties and benefit the applications of this material system.Comment: 7 pages and 6 figure

    Spontaneous alloying in binary metal microclusters - A molecular dynamics study -

    Full text link
    Microcanonical molecular dynamics study of the spontaneous alloying(SA), which is a manifestation of fast atomic diffusion in a nano-sized metal cluster, is done in terms of a simple two dimensional binary Morse model. Important features observed by Yasuda and Mori are well reproduced in our simulation. The temperature dependence and size dependence of the SA phenomena are extensively explored by examining long time dynamics. The dominant role of negative heat of solution in completing the SA is also discussed. We point out that a presence of melting surface induces the diffusion of core atoms even if they are solid-like. In other words, the {\it surface melting} at substantially low temperature plays a key role in attaining the SA.Comment: 15 pages, 12 fgures, Submitted to Phys.Rev.

    Blue shifting of the A exciton peak in folded monolayer 1H-MoS2

    Full text link
    The large family of layered transition-metal dichalcogenides is widely believed to constitute a second family of two-dimensional (2D) semiconducting materials that can be used to create novel devices that complement those based on graphene. In many cases these materials have shown a transition from an indirect bandgap in the bulk to a direct bandgap in monolayer systems. In this work we experimentally show that folding a 1H molybdenum disulphide (MoS2) layer results in a turbostratic stack with enhanced photoluminescence quantum yield and a significant shift to the blue by 90 meV. This is in contrast to the expected 2H-MoS2 band structure characteristics, which include an indirect gap and quenched photoluminescence. We present a theoretical explanation to the origin of this behavior in terms of exciton screening.Comment: 16 pages, 8 figure

    Submicrometer Dimple Array Based Interference Color Field Displays and Sensors

    Get PDF
    We report a technique for producing bright color fields over extended surfaces, via optical interference, with the capability of producing arbitrary visible colors in areas as small as 100 μm^2. Periodic arrays of submicrometer dimples are fabricated on reflective silicon surfaces, and diffraction-induced mutual interference of light reflected from the upper and lower levels of the dimpled surfaces generates color depending on wavelength scaled dimple depth and periodicity. Colors of the entire visible spectrum can be generated by dimple arrays with different dimple depths. The topological permeability of such an open surface readily allows infusion of liquids, with different refractive indices, for color switching and detection. These easy to fabricate, scalable, robust devices, on solid as well as flexible supports, could find a wide range of applications such as cheap high-resolution printable dye/pigment-free displays, reliable index-of-refraction sensors with color readout for liquids, and lab-on-chip liquid flow monitors

    Size Effects in Carbon Nanotubes

    Full text link
    The inter-shell spacing of multi-walled carbon nanotubes was determined by analyzing the high resolution transmission electron microscopy images of these nanotubes. For the nanotubes that were studied, the inter-shell spacing d^002{\hat{d}_{002}} is found to range from 0.34 to 0.39 nm, increasing with decreasing tube diameter. A model based on the results from real space image analysis is used to explain the variation in inter-shell spacings obtained from reciprocal space periodicity analysis. The increase in inter-shell spacing with decreased nanotube diameter is attributed to the high curvature, resulting in an increased repulsive force, associated with the decreased diameter of the nanotube shells.Comment: 4 pages. RevTeX. 4 figure

    Functionalization of carbon nanotubes using phenosafranin

    Get PDF
    The functionalization of carbon nanotubes by using phenosafranin was discussed. The self-assembly of phenosafranin (PSF) to multiwalled carbon nanotube (MWNT) was shown by using spectroscopic analysis and atomic force microscopy (AFM) phase imaging studies. It was observed that the shift in absorption spectra was associated with charge transfer of valence electrons from PSF to electron accepting sites on the MWNT. The Raman-active disorder modes were used to fingerprint PSF attachment to MWNT via defect states. A molecular topographic visual confirmation of PSF attached to the MWNT was obtained by using AFM phase imaging

    Bundling up carbon nanotubes through Wigner defects

    Full text link
    We show, using ab initio total energy density functional theory, that the so-called Wigner defects, an interstitial carbon atom right besides a vacancy, which are present in irradiated graphite can also exist in bundles of carbon nanotubes. Due to the geometrical structure of a nanotube, however, this defect has a rather low formation energy, lower than the vacancy itself, suggesting that it may be one of the most important defects that are created after electron or ion irradiation. Moreover, they form a strong link between the nanotubes in bundles, increasing their shear modulus by a sizeable amount, clearly indicating its importance for the mechanical properties of nanotube bundles.Comment: 5 pages and 4 figure
    corecore