27 research outputs found

    Protein profile analysis of cellular samples from the cervix for the objective diagnosis of cervical cancer using HPLC-LIF

    No full text
    Protein profiles of cytologic samples from the cervix were studied using High Performance Liquid Chromatographic (HPLC) separation combined with ultra-sensitive laser induced fluorescence (LIF) detection. HPLC-LIF Protein profiles of samples from clinically normal subjects, individuals suffering from cervical cancer (different stages), and subjects who had other gynecological problems related to cervix, like erosion of cervix, Nabothian cyst etc., but no malignancy, were subjected to Principal Component Analysis (PCA). The application of HPLC-LIF protein profiling combined with PCA was found to be a highly efficient method for discrimination of different classes of samples with high sensitivity and specificity. Diagnostic accuracy and optimal threshold- decision criterion- for objective discrimination were estimated using sensitivity- specificity pairs and Youden's index (J) plots

    Application of HPLC Combined with Laser Induced Fluorescence for Protein Profile Analysis of Tissue Homogenates in Cervical Cancer

    Get PDF
    A highly objective method, High Performance Liquid Chromatography with Laser Induced Fluorescence (HPLC-LIF) technique was used to study the protein profiles of normal and cervical cancer tissue homogenates. A total of 44 samples including normal cervical biopsy samples from the hysterectomy patients and the patients suffering from different stages of the cervical cancer were recorded by HPLC-LIF and analysed by Principle Component Analysis (PCA) to get statistical information on different tissue components. Discrimination of different stages of the samples was carried out by considering three parameters—scores of factor, spectral residual, and Mahalanobis Distance. Diagnostic accuracy of the method was evaluated using Receiver Operating Characteristic (ROC) analysis, and Youden's index (J) plots. The PCA results showed high sensitivity and specificity (∼100) for cervical cancer diagnosis. ROC and Youden's index curves for both normal and malignant standard sets show good diagnostic accuracy with high AUC values. The statistical analysis has shown that the differences in protein profiles can be used to diagnose biochemical changes in the tissue, and thus can be readily applied for the detection of cervical cancer, even in situations where a histopathology examination is not easy because of nonavailability of experienced pathologists

    3D/4D multiscale imaging in acute lymphoblastic leukemia cells-visualizing dynamics of cell death

    No full text
    Quantitative phase detection is a new methodology that provides quantitative information on cellular morphology to monitor the cell status, drug response and toxicity. In this paper the morphological changes in acute leukemia cells treated with chitosan were detected using d’Bioimager a robust imaging system. Quantitative phase image of the cells was obtained with numerical analysis. Results show that the average area and optical volume of the chitosan treated cells is significantly reduced when compared with the control cells, which reveals the effect of chitosan on the cancer cells. From the results it can be attributed that d’Bioimager can be used as a non-invasive imaging alternative to measure the morphological changes of the living cells in real time.Published versio
    corecore