726 research outputs found
Charge transfer electrostatic model of compositional order in perovskite alloys
We introduce an electrostatic model including charge transfer, which is shown
to account for the observed B-site ordering in Pb-based perovskite alloys. The
model allows charge transfer between A-sites and is a generalization of
Bellaiche and Vanderbilt's purely electrostatic model. The large covalency of
Pb^{2+} compared to Ba^{2+} is modeled by an environment dependent effective
A-site charge. Monte Carlo simulations of this model successfully reproduce the
long range compositional order of both Pb-based and Ba-based complex
A(BB^{'}B^{''})O_3 perovskite alloys. The models are also extended to study
systems with A-site and B-site doping, such as
(Na_{1/2}La_{1/2})(Mg_{1/3}Nb_{2/3})O_3,
(Ba_{1-x}La_{x})(Mg_{(1+x)/3}Nb_{(2-x)/3})O_3 and
(Pb_{1-x}La_{x})(Mg_{(1+x)/3}Ta_{(2-x)/3})O_3. General trends are reproduced by
purely electrostatic interactions, and charge transfer effects indicate that
local structural relaxations can tip the balance between different B-site
orderings in Pb based materials.Comment: 15 pages, 6 figure
Cosine Similarity Measure According to a Convex Cost Function
In this paper, we describe a new vector similarity measure associated with a
convex cost function. Given two vectors, we determine the surface normals of
the convex function at the vectors. The angle between the two surface normals
is the similarity measure. Convex cost function can be the negative entropy
function, total variation (TV) function and filtered variation function. The
convex cost function need not be differentiable everywhere. In general, we need
to compute the gradient of the cost function to compute the surface normals. If
the gradient does not exist at a given vector, it is possible to use the
subgradients and the normal producing the smallest angle between the two
vectors is used to compute the similarity measure
Kinetic Monte Carlo Simulations of Crystal Growth in Ferroelectric Alloys
The growth rates and chemical ordering of ferroelectric alloys are studied
with kinetic Monte Carlo (KMC) simulations using an electrostatic model with
long-range Coulomb interactions, as a function of temperature, chemical
composition, and substrate orientation. Crystal growth is characterized by
thermodynamic processes involving adsorption and evaporation, with
solid-on-solid restrictions and excluding diffusion. A KMC algorithm is
formulated to simulate this model efficiently in the presence of long-range
interactions. Simulations were carried out on Ba(Mg_{1/3}Nb_{2/3})O_3 (BMN)
type materials. Compared to the simple rocksalt ordered structures, ordered BMN
grows only at very low temperatures and only under finely tuned conditions. For
materials with tetravalent compositions, such as (1-x)Ba(Mg_{1/3}Nb_{2/3})O_3 +
xBaZrO_3 (BMN-BZ), the model does not incorporate tetravalent ions at
low-temperature, exhibiting a phase-separated ground state instead. At higher
temperatures, tetravalent ions can be incorporated, but the resulting crystals
show no chemical ordering in the absence of diffusive mechanisms.Comment: 13 pages, 16 postscript figures, submitted to Physics Review B
Journa
Approximate Computation of DFT without Performing Any Multiplications: Applications to Radar Signal Processing
In many practical problems it is not necessary to compute the DFT in a
perfect manner including some radar problems. In this article a new
multiplication free algorithm for approximate computation of the DFT is
introduced. All multiplications in DFT are replaced by an
operator which computes . The new transform is
especially useful when the signal processing algorithm requires correlations.
Ambiguity function in radar signal processing requires high number of
multiplications to compute the correlations. This new additive operator is used
to decrease the number of multiplications. Simulation examples involving
passive radars are presented
Bubbly cavitating flow generation and investigation of its erosional nature for biomedical applications
This paper was presented at the 2nd Micro and Nano Flows Conference (MNF2009), which was held at Brunel University, West London, UK. The conference was organised by Brunel University and supported by the Institution of Mechanical Engineers, IPEM, the Italian Union of Thermofluid dynamics, the Process Intensification Network, HEXAG - the Heat Exchange Action Group and the Institute of Mathematics and its Applications.The paper presents a study of the generation of hydrodynamic bubbly cavitation in microchannels to investigate the destructive energy output resulting from this phenomenon and its potential use in biomedical applications. The research performed in this study includes the experimental results from bubbly cavitation experiments and the findings showing the destructive effects of bubbly cavitating flow on selected specimens and cells. The bubbles caused by hydrodynamic cavitation are highly destructive at the surfaces of the target medium on which they are carefully focused. The resulting destructive energy output could be effectively used for good means such as destroying kidney stones or killing infected cancer cells. Motivated by this potential, the cavitation damage (material removal) to cancerous cells and chalk pieces having similar material properties as calcium phosphate in human bones was investigated. Also the potential of hydrodynamic bubbly cavitation generated at the microscale for biomedical treatments was revealed using the microchannel configuration of a microorifice (with an inner diameter of 0.147 mm and a length of 1.52cm).This work was supported by Sabancı University Internal Grant for Research Program under Grant FRG-C47004
How to Help the Poor to Save a Bit: Evidence from a Field Experiment in Kenya
Worldwide, the majority of workers hold jobs in the informal sector that do not provide access to social insurance programs. We partnered with a savings product provider in Kenya to test the extent to which behavioral interventions and financial incentives can increase the saving rate through a voluntary pension program for informal workers with low and irregular income. Our experiment lasted for six months and included a total of twelve conditions. The control condition received weekly reminders and balance reporting via text messages. The treatment conditions received in addition one of the following interventions: (1) reminder text messages framed as if they came from the participant's kid (2) a golden colored coin with numbers for each week of the trial, on which participants were asked to keep track of their weekly deposits (3) a match of weekly savings: The match was either 10% or 20% up to a certain amount per week. The match was either deposited at the end of each week or the highest possible match was deposited at the start of each week and was adjusted at the end. Among these interventions, by far the most effective was the coin: Those in the coin condition saved on average the highest amount and more than twice as those in the control condition. We hypothesize that being a tangible track-keeping object; the coin made subjects remember to save more often. Our results support the line of literature suggesting that saving decisions involve psychological aspects and that policy makers and product designers should take these influences into account
CVM studies on the atomic ordering in complex perovskite alloys
The atomic ordering in complex perovskite alloys is investigated by the
cluster variation method (CVM). For the 1/3\{111\}-type ordered structure, the
order-disorder phase transition is the first order, and the order parameter of
the 1:2 complex perovskite reaches its maximum near x=0.25. For the
1/2\{111\}-type ordered structure, the ordering transition is the second order.
Phase diagrams for both ordered structures are obtained. The order-disorder
line obeys the linear law.Comment: 10 pages, 6 figure
Ab-initio design of perovskite alloys with predetermined properties: The case of Pb(Sc_{0.5} Nb_{0.5})O_{3}
A first-principles derived approach is combined with the inverse Monte Carlo
technique to determine the atomic orderings leading to prefixed properties in
Pb(Sc_{0.5}Nb_{0.5})O_{3} perovskite alloy. We find that some arrangements
between Sc and Nb atoms result in drastic changes with respect to the
disordered material, including ground states of new symmetries, large
enhancement of electromechanical responses, and considerable shift of the Curie
temperature. We discuss the microscopic mechanisms responsible for these
unusual effects.Comment: 5 pages with 2 postscript figures embedde
Electrostatic model of atomic ordering in complex perovskite alloys
We present a simple ionic model which successfully reproduces the various
types of compositional long-range order observed in a large class of complex
insulating perovskite alloys. The model assumes that the driving mechanism
responsible for the ordering is simply the electrostatic interaction between
the different ionic species. A possible new explanation for the anomalous
long-range order observed in some Pb relaxor alloys, involving the proposed
existence of a small amount of Pb^4+ on the B sublattice, is suggested by an
analysis of the model.Comment: 4 pages, two-column style with 1 postscript figure embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#lb_orde
Heterovalent and A-atom effects in A(B'B'')O3 perovskite alloys
Using first-principles supercell calculations, we have investigated
energetic, structural and dielectric properties of three different A(B'B'')O_3
perovskite alloys: Ba(Zn_{1/3}Nb_{2/3})O_3 (BZN), Pb(Zn_{1/3}Nb_{2/3})O_3
(PZN), and Pb(Zr_{1/3}Ti_{2/3})O_3 (PZT). In the homovalent alloy PZT, the
energetics are found to be mainly driven by atomic relaxations. In the
heterovalent alloys BZN and PZN, however, electrostatic interactions among B'
and B'' atoms are found to be very important. These electrostatic interactions
are responsible for the stabilization of the observed compositional long-range
order in BZN. On the other hand, cell relaxations and the formation of short
Pb--O bonds could lead to a destabilization of the same ordered structure in
PZN. Finally, comparing the dielectric properties of homovalent and
heterovalent alloys, the most dramatic difference arises in connection with the
effective charges of the B' atom. We find that the effective charge of Zr in
PZT is anomalous, while in BZN and PZN the effective charge of Zn is close to
its nominal ionic value.Comment: 7 pages, two-column style with 2 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#lb_he
- …
