763 research outputs found
Charge transfer electrostatic model of compositional order in perovskite alloys
We introduce an electrostatic model including charge transfer, which is shown
to account for the observed B-site ordering in Pb-based perovskite alloys. The
model allows charge transfer between A-sites and is a generalization of
Bellaiche and Vanderbilt's purely electrostatic model. The large covalency of
Pb^{2+} compared to Ba^{2+} is modeled by an environment dependent effective
A-site charge. Monte Carlo simulations of this model successfully reproduce the
long range compositional order of both Pb-based and Ba-based complex
A(BB^{'}B^{''})O_3 perovskite alloys. The models are also extended to study
systems with A-site and B-site doping, such as
(Na_{1/2}La_{1/2})(Mg_{1/3}Nb_{2/3})O_3,
(Ba_{1-x}La_{x})(Mg_{(1+x)/3}Nb_{(2-x)/3})O_3 and
(Pb_{1-x}La_{x})(Mg_{(1+x)/3}Ta_{(2-x)/3})O_3. General trends are reproduced by
purely electrostatic interactions, and charge transfer effects indicate that
local structural relaxations can tip the balance between different B-site
orderings in Pb based materials.Comment: 15 pages, 6 figure
Kinetic Monte Carlo Simulations of Crystal Growth in Ferroelectric Alloys
The growth rates and chemical ordering of ferroelectric alloys are studied
with kinetic Monte Carlo (KMC) simulations using an electrostatic model with
long-range Coulomb interactions, as a function of temperature, chemical
composition, and substrate orientation. Crystal growth is characterized by
thermodynamic processes involving adsorption and evaporation, with
solid-on-solid restrictions and excluding diffusion. A KMC algorithm is
formulated to simulate this model efficiently in the presence of long-range
interactions. Simulations were carried out on Ba(Mg_{1/3}Nb_{2/3})O_3 (BMN)
type materials. Compared to the simple rocksalt ordered structures, ordered BMN
grows only at very low temperatures and only under finely tuned conditions. For
materials with tetravalent compositions, such as (1-x)Ba(Mg_{1/3}Nb_{2/3})O_3 +
xBaZrO_3 (BMN-BZ), the model does not incorporate tetravalent ions at
low-temperature, exhibiting a phase-separated ground state instead. At higher
temperatures, tetravalent ions can be incorporated, but the resulting crystals
show no chemical ordering in the absence of diffusive mechanisms.Comment: 13 pages, 16 postscript figures, submitted to Physics Review B
Journa
CVM studies on the atomic ordering in complex perovskite alloys
The atomic ordering in complex perovskite alloys is investigated by the
cluster variation method (CVM). For the 1/3\{111\}-type ordered structure, the
order-disorder phase transition is the first order, and the order parameter of
the 1:2 complex perovskite reaches its maximum near x=0.25. For the
1/2\{111\}-type ordered structure, the ordering transition is the second order.
Phase diagrams for both ordered structures are obtained. The order-disorder
line obeys the linear law.Comment: 10 pages, 6 figure
Electrostatic model of atomic ordering in complex perovskite alloys
We present a simple ionic model which successfully reproduces the various
types of compositional long-range order observed in a large class of complex
insulating perovskite alloys. The model assumes that the driving mechanism
responsible for the ordering is simply the electrostatic interaction between
the different ionic species. A possible new explanation for the anomalous
long-range order observed in some Pb relaxor alloys, involving the proposed
existence of a small amount of Pb^4+ on the B sublattice, is suggested by an
analysis of the model.Comment: 4 pages, two-column style with 1 postscript figure embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#lb_orde
The Achilles Heel of AI: Validation & Verification and an Approach to Tackle This Challenge
Changing random stuff until your program works is “hacky” and “bad coding practice.”
If you do it fast enough, it is Machine Learning and pays 4x your current salary
Heterovalent and A-atom effects in A(B'B'')O3 perovskite alloys
Using first-principles supercell calculations, we have investigated
energetic, structural and dielectric properties of three different A(B'B'')O_3
perovskite alloys: Ba(Zn_{1/3}Nb_{2/3})O_3 (BZN), Pb(Zn_{1/3}Nb_{2/3})O_3
(PZN), and Pb(Zr_{1/3}Ti_{2/3})O_3 (PZT). In the homovalent alloy PZT, the
energetics are found to be mainly driven by atomic relaxations. In the
heterovalent alloys BZN and PZN, however, electrostatic interactions among B'
and B'' atoms are found to be very important. These electrostatic interactions
are responsible for the stabilization of the observed compositional long-range
order in BZN. On the other hand, cell relaxations and the formation of short
Pb--O bonds could lead to a destabilization of the same ordered structure in
PZN. Finally, comparing the dielectric properties of homovalent and
heterovalent alloys, the most dramatic difference arises in connection with the
effective charges of the B' atom. We find that the effective charge of Zr in
PZT is anomalous, while in BZN and PZN the effective charge of Zn is close to
its nominal ionic value.Comment: 7 pages, two-column style with 2 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#lb_he
Ab-initio design of perovskite alloys with predetermined properties: The case of Pb(Sc_{0.5} Nb_{0.5})O_{3}
A first-principles derived approach is combined with the inverse Monte Carlo
technique to determine the atomic orderings leading to prefixed properties in
Pb(Sc_{0.5}Nb_{0.5})O_{3} perovskite alloy. We find that some arrangements
between Sc and Nb atoms result in drastic changes with respect to the
disordered material, including ground states of new symmetries, large
enhancement of electromechanical responses, and considerable shift of the Curie
temperature. We discuss the microscopic mechanisms responsible for these
unusual effects.Comment: 5 pages with 2 postscript figures embedde
Compositional Inversion Symmetry Breaking in Ferroelectric Perovskites
Ternary cubic perovskite compounds of the form A_(1/3)A'_(1/3)A''_(1/3)BO_3
and AB_(1/3)B'_(1/3)B''_(1/3)O_3, in which the differentiated cations form an
alternating series of monolayers, are studied using first-principles methods.
Such compounds are representative of a possible new class of materials in which
ferroelectricity is perturbed by compositional breaking of inversion symmetry.
For isovalent substitution on either sublattice, the ferroelectric double-well
potential is found to persist, but becomes sufficiently asymmetric that
minority domains may no longer survive. The strength of the symmetry breaking
is enormously stronger for heterovalent substitution, so that the double-well
behavior is completely destroyed. Possible means of tuning between these
behaviors may allow for the optimization of resulting materials properties.Comment: 4 pages, two-column style with 3 postscript figures embedded. Uses
REVTEX and epsf macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/index.html#sai_is
Comparison of DC Bead-irinotecan and DC Bead-topotecan drug eluting beads for use in locoregional drug delivery to treat pancreatic cancer
DC Bead is a drug delivery embolisation system that can be loaded with doxorubicin or irinotecan for the treatment of a variety of liver cancers. In this study we demonstrate that the topoisomerase I inhibitor topotecan hydrochloride can be successfully loaded into the DC Bead sulfonate-modified polyvinyl alcohol hydrogel matrix, resulting in a sustained-release drug eluting bead (DEBTOP) useful for therapeutic purposes. The in vitro drug loading capacity, elution characteristics and the effects on mechanical properties of the beads are described with reference to our previous work with irinotecan hydrochloride (DEBIRI). Results showed that drug loading was faster when the solution was agitated compared to static loading and a maximum loading of ca. 40–45 mg topotecan in 1 ml hydrated beads was achievable. Loading the drug into the beads altered the size, compressibility moduli and colour of the bead. Elution was shown to be reliant on the presence of ions to perform the necessary exchange with the electrostatically bound topotecan molecules. Topotecan was shown by MTS assay to have an IC50 for human pancreatic adenocarcinoma cells (PSN-1) of 0.22 and 0.27 lM compared to 28.1 and 19.2 lM for irinotecan at 48 and 72 h, respectively. The cytotoxic efficacy of DEBTOP on PSN-1 was compared to DEBIRI. DEPTOP loaded at 6 & 30 mg ml-1, like its free drug form, was shown to be more potent than DEBIRI of comparable doses at 24, 48 & 72 h using a slightly modified MTS assay. Using a PSN-1 mouse xenograft model, DEBIRI doses of 3.3–6.6 mg were shown to be well tolerated (even with repeat administration) and effective in reducing the tumour size. DEBTOP however, was lethal after 6 days at doses of 0.83–1.2 mg but demonstrated reasonable efficacy and tolerability (again with repeat injection possible) at 0.2–0.4 mg doses. Care must therefore be taken when selecting the dose of topotecan to be loaded into DC Bead given its greater potency and potential toxicity
Director networks and informed traders
We provide evidence that sophisticated investors like short sellers, option traders, and financial institutions are more informed when trading stocks of companies with more connected board members. For firms with large director networks, the annualized return difference between the highest and lowest quintile of informed trading ranges from 4% to 7.2% compared to the same return difference in firms with less connected directors. Sophisticated investors better predict outcomes of upcoming earnings surprises and firm-specific news sentiment for companies with more connected directors. Changes in board connectedness are positively associated with changes in measures of adverse selection
- …
