390 research outputs found

    Statins inhibited erythropoietin-induced proliferation of rat vascular smooth muscle cells

    Get PDF
    Erythropoietin (EPO) directly stimulates the proliferation of vascular smooth muscle cells, and this is believed to be one of the mechanisms of vascular access failure of hemodialysis patients. However, precise mechanisms of the EPO-induced proliferation of vascular smooth muscle cells are not certain. HMG-CoA reductase inhibitors (statins) are primarily used to reduce cholesterol levels, but also exert other effects, including reno-protective effects. We evaluated the effect of several statins with various hydrophilicities on the EPO-induced proliferation of primary cultured rat vascular smooth muscle cells (VSMCs) in vitro. EPO significantly and concentration-dependently increased DNA synthesis as assessed by [3H]thymidine incorporation, cell proliferation as assessed by WST-1 assay, and activation of the p44/42MAPK pathway. Therapeutic doses of statins (pravastatin, simvastatin, atorvastatin and fluvastatin) in patients with hypercholesterolemia almost completely suppressed all of the EPO-induced effects in a concentration-dependent manner. Co-addition of mevalonic acid almost completely reversed the effects of statins. Statin alone did not affect the basal proliferation capacity of the cells. The effects were almost similar among the statins. We concluded that statins inhibited EPO-induced proliferation in rat VSMCs at least partly through their inhibition of HMG-CoA reductase activity. In the future, statins might prove useful for the treatment of EPO-induced hyperplasia of vascular access. Because the statins all showed comparable effects irrespective of their hydrophilicities, these effects might be a class effect

    Simultaneous Diffusion Coating of Cr and Si on Stainless Steel using Fluoride-Free Activator

    Get PDF
    The simultaneous deposition of chromium and silicon on stainless steel using a halide-activated diffusion coating process was performed to improve oxidation properties at high temperatures. Conventional procedure in diffusion coating process uses an activator containing fluoride. Fluoride is harmful for the human body and the environment. This experimental object is a development of the fluoride-free activator in diffusion coating of chromizing-siliconizing. In this investigation, Cr-Si intermetallic compound layers were coated on stainless steel by the pack cementation to improve its oxidation resistance and the resulting properties of the obtained coatings were investigated. The pack powders used for the diffusion coating were Cr and Si as diffusion element, Al2O3 as filler, and NH4Cl and CaCl2 as fluoride-free activator or NH4Cl, NaF and AlF3 as fluoride-added activator. The diffusion coating treatment was conducted at 1323 K for 18.0 ks in an Ar atmosphere. After the simultaneous deposition of chromium and silicon on stainless steel, a modified layer was observed on the treated sample surface and fluoride-free activator could also modify the steel surface using pack cementation

    Mechanism of Cd-Induced Inhibition of Na-Glucose Cotransporter in Rabbit Proximal Tubule Cells: Roles of Luminal pH and Membrane-Bound Carbonic Anhydrase

    Get PDF
    Background/Aims: We have previously reported that a complex of cadmium-metallothionein (Cd-MT) directly affects the apical Na-glucose cotransporter on the luminal side in proximal tubules, suggesting that Cd-MT is more toxic than CdCl2 in causing tubulopathy. To find the potential mechanisms, we evaluated the effect of luminal pH alteration and carbonic anhydrase (CA) inhibition on Cd-MT-induced reduction of glucose-dependent transmural voltage in rabbit S2 segments perfused in vitro. Methods: Before and after the addition of Cd-MT (1 µg Cd/ml) to the lumen, the deflections of transmural voltage upon the elimination of glucose from the perfusate (DeltaVtglu) were measured as a parameter of activity of the Na-glucose cotransporter. Results: During perfusion with a control solution of pH 7.4, the DeltaVtglu significantly decreased after addition of Cd-MT for 10 min. A reduction in pH to 6.8 significantly shortened the time needed to reduce the DeltaVtglu to 20 min. Furthermore, simultaneous addition of acetazolamide with control perfusate prevented the reduction. P-Fluorobenzyl-aminobenzolamide (pFB-ABZ), a membrane-impermeable CA inhibitor, added to the lumen also completely prevented the reduction in DeltaVtglu. In rabbits with chronic Cd exposure, acetazolamide prevented the glucosuria. Conclusion: Cd-MT-induced inhibition of Na-glucose cotransporter activity in the S2 segment strongly depends on luminal pH, and that an increase in pH by inhibition of luminal membrane-bound CA is useful to prevent renal Cd toxicity

    Dosing-time dependent effect of dexamethasone on bone density in rats

    Get PDF
    AimsWhile glucocorticoids are widely used to treat patients with various diseases, they often cause adverse effects such as bone fractures. In this study, we investigated whether the decrease in bone density induced by glucocorticoid therapy was ameliorated by optimizing a dosing-time.Main methodsRats were administered with dexamethasone (Dex) orally (1 mg/kg/day) for 6 weeks at a resting or an active period. After the end of the treatment, bone density of femur, biomarkers of bone formation and resorption, and other biomedical variables were measured.Key findingsBone density of femur was significantly decreased by the 6-week treatment with Dex, and the degree of decrease in the 14 HALO (hours after light on) dosing group (an active period) was larger than that in the 2 HALO dosing group (a resting period). Although urinary calcium excretion was accelerated by Dex treatment, secondary hyperparathyroidism was not detected. Histomorphometry analysis showed that Dex suppressed bone resorption, which was larger in the 2 HALO than in the 14 HALO groups. These data indicate that Dex equally suppressed bone formation in the 2 and 14 HALO groups, but inhibited bone resorption more in the 2 HALO than in the 14 HALO groups.SignificanceThis study shows that the decrease in bone density induced by Dex was changed by its dosing-time

    Evaluation of the interaction between nonsteroidal anti-inflammatory drugs and methotrexate using human organic anion transporter 3-transfected cells

    Get PDF
    Coadministration of methotrexate and nonsteroidal anti-inflammatory drugs (NSAIDs) can cause a pharmacokinetic interaction and a subsequent increase in blood methotrexate concentrations. methotrexate and most NSAIDs are excreted into urine via organic anion transporter 3 (OAT3). The purpose of this study was to evaluate NSAIDs that compete less with methotrexate by using the renal cell line stably expressing human OAT3 (S2-hOAT3) in vitro. We also confirmed the pharmacokinetic interaction of methotrexate with NSAIDs in vivo. [3H]methotrexate uptake into S2-hOAT3 cells was inhibited by most NSAIDs in a concentration-dependent manner, but aspirin, salicylate, tiaramide, and acetaminophen did not inhibit uptake. Inhibition by sulindac and pranoprofen was weaker at therapeutic drug concentrations. Furthermore, methotrexate concentrations in rat serum were significantly increased in a NSAID concentration-dependent manner when concentrations of coadministered NSAIDs increased above the Ki values obtained in the in vitro study. On the other hand, drugs that were not substrates of hOAT3, such as acetaminophen, did not interact with methotrexate. The magnitude of the pharmacokinetic interaction between methotrexate and NSAIDs was significantly correlated with results of the accumulation study in vitro and was not significantly correlated with a reduction of urinary creatinine excretion. In conclusion, methotrexate and most NSAIDs are substrates of hOAT3, and those drugs compete via hOAT3 in tubular secretion, the major mechanism of the interaction between methotrexate and NSAIDs. The accumulation study using S2-hOAT3 cells might be useful for screening of potential interactions between methotrexate and new NSAIDs in vivo

    Einfluß von Chrom, Kupfer und Zinn auf die Aktivität des Kohlenstoffs in flüssigem Stahl mit höherem Kohlenstoffgehalt

    Get PDF
    Um die Kohlenstoffaktivität in Fe-C Lösungen und den Wirkungsparameter ε(X)/C=(∂ 1nγc/∂Nₓ)Nc (X ist das Zusatzelement Chrom, Kupfer und Zinn) bei Kohlenstoff-gehalten zwischen 0.4〜1.4 Gew. %C zu bestimmen, wurde die Konzentration des Kohlenstoffs oder der Zusatzelemente in flüssigen Fe-C und Fe-C-X Systemen unter der Atmosphäre eines Gasgemisches aus Kohlenoxyd und Kohlendioxyd bei 1550°C gemessen. Aus der vorliegenden Untersuchung ergaben sich die Abhängigkeit des Kohlenstoff-aktivitätskoeffizienten von der Kohlenstoffkonzentration und die Wirkungsparameter ε(X)/C=(∂ 1nγc/∂Nₓ)Nc

    The Shock State of Itokawa Sample

    Get PDF
    One of the fundamental aspects of any astromaterial is its shock history, since this factor elucidates critical historical events, and also because shock metamorphism can alter primary mineralogical and petrographic features, and reset chronologies [1]. Failure to take shock history into proper account during characterization can result in seriously incorrect conclusions being drawn. Thus the Hayabusa Preliminary Examination Team (HASPET) made shock stage determination of the Itokawa samples a primary goal [2]. However, we faced several difficulties in this particular research. The shock state of ordinary chondrite materials is generally determined by simple optical petrographic observation of standard thin sections. The Itokawa samples available to the analysis team were mounted into plastic blocks, were polished on only one side, and were of non-standard and greatly varying thickness, all of which significantly complicated petrographic analysis but did not prevent it. We made an additional estimation of the sample shock state by a new technique for this analysis - electron back-scattered diffraction (EBSD) in addition to standard petrographic techniques. We are also investigating the crystallinity of Itokawa olivine by Synchrotron X-ray diffraction (SXRD)

    Profile of rhythmic gene expression in the livers of obese diabetic KK-Ay mice

    Get PDF
    金沢大学大学院医学系研究科環境社会医学Although a number of genes expressed in most tissues, including the liver, exhibit circadian regulation, gene expression profiles are usually examined only at one scheduled time each day. In this study, we investigated the effects of obese diabetes on the hepatic mRNA levels of various genes at 6-h intervals over a single 24-h period. Microarray analysis revealed that many genes are expressed rhythmically, not only in control KK mice but also in obese diabetic KK-Ay mice. Real-time quantitative PCR verified that 19 of 23 putative circadianly expressed genes showed significant 24-h rhythmicity in both strains. However, obese diabetes attenuated these expression rhythms in 10 of 19 genes. More importantly, the effects of obese diabetes were observed throughout the day in only two genes. These results suggest that observation time influences the results of gene expression analyses of genes expressed circadianly. © 2006 Elsevier Inc. All rights reserved

    Prostaglandin E2 receptor type 2-selective agonist prevents the degeneration of articular cartilage in rabbit knees with traumatic instability

    Get PDF
    [Introduction]Osteoarthritis (OA) is a common cause of disability in older adults. We have previously reported that an agonist for subtypes EP2 of the prostaglandin E2 receptor (an EP2 agonist) promotes the regeneration of chondral and osteochondral defects. The purpose of the current study is to analyze the effect of this agonist on articular cartilage in a model of traumatic degeneration. [Methods]The model of traumatic degeneration was established through transection of the anterior cruciate ligament and partial resection of the medial meniscus of the rabbits. Rabbits were divided into 5 groups; G-S (sham operation), G-C (no further treatment), G-0, G-80, and G-400 (single intra-articular administration of gelatin hydrogel containing 0, 80, and 400 μg of the specific EP2 agonist, ONO-8815Ly, respectively). Degeneration of the articular cartilage was evaluated at 2 or 12 weeks after the operation. [Results]ONO-8815Ly prevented cartilage degeneration at 2 weeks, which was associated with the inhibition of matrix metalloproteinase-13 (MMP-13) expression. The effect of ONO-8815Ly failed to last, and no effects were observed at 12 weeks after the operation. [Conclusions]Stimulation of prostaglandin E2 (PGE2) via EP2 prevents degeneration of the articular cartilage during the early stages. With a system to deliver it long term, the EP2 agonist could be a new therapeutic tool for OA

    Drug interaction between celecoxib and methotrexate in organic anion transporter 3–transfected renal cells and in rats in vivo

    Get PDF
    Methotrexate has a clinically important pharmacokinetic interaction with nonsteroidal anti-inflammatory drugs (NSAIDs) mainly through its competition for tubular secretion via the renal organic anion transporter 3 (OAT3). We have previously reported the usefulness of OAT3-transfected renal tubular cells for screening of the drugs which interfere with the pharmacokinetics of methotrexate. Celecoxib, a cyclooxygenase (COX) 2 inhibitor, has not been reported to interact with methotrexate, but the mechanisms are unclear why the interaction did not occur. The purpose of this study was to evaluate the effect of celecoxib on methotrexate tubular secretion using a renal cell line stably expressing human OAT3 (S2-hOAT3), and to evaluate the pharmacokinetic interaction of the two drugs in rats. [3H]methotrexate uptake into S2-hOAT3 cells was significantly inhibited by celecoxib in a concentration-dependent manner and the Ki value was 35.3 µM. However, methotrexate serum concentrations and urinary excretion of methotrexate over 24 h in rats were not affected by celecoxib (50, 200 mg/kg). Celecoxib serum concentrations were increased by the increase in celecoxib dosage and the maximum drug concentration (Cmax) was 20.6 µM (celecoxib 200 mg/kg), which did not reach the Ki value obtained in the in vitro study. These results indicated that celecoxib inhibited the secretion of methotrexate via hOAT3, which suggested that celecoxib was a substrate of hOAT3. However, co-administration of the two drugs at clinical dosage did not affect the pharmacokinetics of methotrexate, because the serum concentrations did not reach the Ki value. Although the accumulation study using S2-hOAT3 cells was useful to predict the interaction between the new drug and methotrexate in vivo, a comparison of the Ki value with the Cmax in clinical dosage was necessary to evaluate the degree of this interaction
    corecore