496 research outputs found
Theory of multi-fans
We introduce the notion of a multi-fan. It is a generalization of that of a
fan in the theory of toric variety in algebraic geometry. Roughly speaking a
toric variety is an algebraic variety with an action of algebraic torus of the
same dimension as that of the variety, and a fan is a combinatorial object
associated with the toric variety. Algebro-geometric properties of the toric
variety can be described in terms of the associated fan. We develop a
combinatorial theory of multi-fans and define ``topological invariants'' of a
multi-fan. A smooth manifold with an action of a compact torus of half the
dimension of the manifold and with some orientation data is called a torus
manifold. We associate a multi-fan with a torus manifold, and apply the
combinatorial theory to describe topological invariants of the torus manifold.
A similar theory is also given for torus orbifolds. As a related subject a
generalization of the Ehrhart polynomial concerning the number of lattice
points in a convex polytope is discussed
Application of continuous light in a plant factory system 4. Physiological changes and concept of injury induction in plant leaves under continuous light
Physiological changes and concept of injury induction occurring under continuous light are comprehensively reviewed. Continuous light usually reduces photosynthetic rate, which may relate to changes in transpiration and leaf necrosis caused by reactive oxygen species. Other factors apart from photosynthesis may also affect leaf injuries occurring under continuous light. Continuous light sometimes increases carbohydrate and some secondary metabolite contents
Six GU-rich (6GUR) FUS-binding motifs detected by normalization of CLIP-seq by Nascent-seq
FUS, an RNA-binding protein (RBP), is mutated or abnormally regulated in neurodegenerative disorders. FUS regulates various aspects of RNA metabolisms. FUS binding sites are rich in GU contents and are highly degenerative. FUS-binding motifs of GGU, GGUG, GUGGU and CGCGC have been previously reported. These motifs, however, are applicable to a small fraction of FUS-binding sites. As CLIP-seq tags are enriched in genes that are highly expressed, we normalized CLIP-seq tags by Nascent-seq tags or RNA-seq tags of mouse N2a cells.Nascent-seq identifies nascent transcripts before being processed for splicing and polyadenylation. We extracted frequently observed 4-nt motifs from Nascent-seq normalized CLIP regions, RNA-seq-normalized CLIP regions,and native CLIP regions. Specific GU-rich motifs were best detected in Nascent-seq-normalized CLIP regions. Analysis of structural motifs using Nascent-seq-normalized CLIP regions also predicted GU-rich sequence forming a stem structure. Sensitivity and specificity were calculated by examining whether the extracted motifs were present at the cross-linking-induced mutation sites (CIMS), where FUS was directly bound. We found that a combination of six motifs (UGUG, CUGG, UGGU, GCUG, GUGG, and UUGG), which were extracted from Nascent-seq-normalized CLIP-regions, had a better discriminative power than (i) motifs extracted from RNA-seqnormalized CLIP regions, (ii) motifs extracted from native CLIP regions, (iii) previously reported individual motifs, or (iv) 15 motifs in SpliceAid 2. Validation of the 6 GU-rich (6GUR) motifs using CLIP-seq of the cerebrum and the whole brain showed that the 6GUR motifs were specifically enriched in CIMS. The number of the 6GUR motifs in an uninterrupted region was counted and multiplied by four to calculate the area, which was defined as the 6GUR-Score. The 6GUR-Score of 8 or more best discriminated CIMS from CIMS-flanking regions. We propose that the 6GUR motifs predict FUS-binding sites more efficiently than previously reported individual motifs or 15 motifs in SpliceAid 2.journal articl
Rules and tools to predict the splicing effects of exonic and intronic mutations
Development of next generation sequencing technologies has enabled detection of extensive arrays of germline and somatic single nucleotide variations (SNVs) in human diseases. SNVs affecting intronic GT‐AG dinucleotides invariably compromise pre‐mRNA splicing. Most exonic SNVs introduce missense/nonsense codons, but some affect auxiliary splicing cis‐elements or generate cryptic GT‐AG dinucleotides. Similarly, most intronic SNVs are silent, but some affect canonical and auxiliary splicing cis‐elements or generate cryptic GT‐AG dinucleotides. However, prediction of the splicing effects of SNVs is challenging. The splicing effects of SNVs generating cryptic AG or disrupting canonical AG can be inferred from the AG‐scanning model. Similarly, the splicing effects of SNVs affecting the first nucleotide G of an exon can be inferred from AG‐dependence of the 3′ splice site (ss). A variety of tools have been developed for predicting the splicing effects of SNVs affecting the 5′ ss, as well as exonic and intronic splicing enhancers/silencers. In contrast, only two tools, the Human Splicing Finder and the SVM‐BP finder, are available for predicting the position of the branch point sequence. Similarly, IntSplice and Splicing based Analysis of Variants (SPANR) are the only tools to predict the splicing effects of intronic SNVs. The rules and tools introduced in this review are mostly based on observations of a limited number of genes, and no rule or tool can ensure 100% accuracy. Experimental validation is always required before any clinically relevant conclusions are drawn. Development of efficient tools to predict aberrant splicing, however, will facilitate our understanding of splicing pathomechanisms in human diseases.ファイル公開:2019-02-01journal articl
FUS-mediated regulation of alternative RNA processing in neurons: insights from global transcriptome analysis
Fused in sarcoma (FUS) is an RNA-binding protein that is causally associated with oncogenesis and neurodegeneration. Recently, the role of FUS in neurodegeneration has been extensively studied, because mutations in FUS are associated with amyotrophic lateral sclerosis (ALS), and the FUS protein has been identified as a major component of intracellular inclusions in neurodegenerative disorders including ALS and frontotemporal lobar degeneration. FUS is a key molecule in transcriptional regulation and RNA processing including processes such as pre-messenger RNA (mRNA) splicing and polyadenylation. Interaction of FUS with various components of the transcription machinery, spliceosome, and the 3′-end processing machinery has been identified. Furthermore, recent advances in high-throughput transcriptomic profiling approaches have enabled us to determine the mechanisms of FUS-dependent RNA processing networks at a cellular level. These analyses have revealed that depletion of FUS in neuronal cells affects alternative splicing and alternative polyadenylation of thousands of mRNAs. Gene ontology analysis has suggested that FUS-modulated genes are implicated in neuronal functions and development. CLIP-seq of FUS has shown that FUS is frequently clustered around these alternative sites of nascent RNA. ChIP-seq of RNA polymerase II (RNAP II) has demonstrated that an interaction between FUS and nascent RNA downregulates local transcriptional activity of RNAP II, which is critically involved in RNA processing. Both alternative splicing and alternative polyadenylation are fundamental processes by which cells expand their transcriptomic diversity, and are particularly essential in the nervous system. Dependence of transcriptomic diversity on FUS makes the nervous system vulnerable to neurodegeneration, when FUS is functionally compromised. WIREs RNA 2016, 7:330–340. doi: 10.1002/wrna.1338journal articl
The DNA polymerase activity of Pol ε holoenzyme is required for rapid and efficient chromosomal DNA replication in Xenopus egg extracts
BACKGROUND: DNA polymerase ε (Pol ε) is involved in DNA replication, repair, and cell-cycle checkpoint control in eukaryotic cells. Although the roles of replicative Pol α and Pol δ in chromosomal DNA replication are relatively well understood and well documented, the precise role of Pol ε in chromosomal DNA replication is not well understood. RESULTS: This study uses a Xenopus egg extract DNA replication system to further elucidate the replicative role(s) played by Pol ε. Previous studies show that the initiation timing and elongation of chromosomal DNA replication are markedly impaired in Pol ε-depleted Xenopus egg extracts, with reduced accumulation of replicative intermediates and products. This study shows that normal replication is restored by addition of Pol ε holoenzyme to Pol ε-depleted extracts, but not by addition of polymerase-deficient forms of Pol ε, including polymerase point or deletion mutants or incomplete enzyme complexes. Evidence is also provided that Pol ε holoenzyme interacts directly with GINS, Cdc45p and Cut5p, each of which plays an important role in initiation of chromosomal DNA replication in eukaryotic cells. CONCLUSION: These results indicate that the DNA polymerase activity of Pol ε holoenzyme plays an essential role in normal chromosomal DNA replication in Xenopus egg extracts. These are the first biochemical data to show the DNA polymerase activity of Pol ε holoenzyme is essential for chromosomal DNA replication in higher eukaryotes, unlike in yeasts
- …
