5,327 research outputs found

    Photon phonon entanglement in coupled optomechanical arrays

    Get PDF
    We consider an array of three optomechanical cavities coupled either reversibly or irreversibly to each other and calculate the amount of entanglement between the different optical and mechanical modes. We show the composite system exhibits intercavity photon-phonon entanglement.Comment: Restructured paper after referee comments, Published versio

    Single-photon optomechanics in the strong coupling regime

    Full text link
    We give a theoretical description of a coherently driven opto-mechanical system with a single added photon. The photon source is modeled as a cavity which initially contains one photon and which is irreversibly coupled to the opto-mechanical system. We show that the probability for the additional photon to be emitted by the opto-mechanical cavity will exhibit oscillations under a Lorentzian envelope, when the driven interaction with the mechanical resonator is strong enough. Our scheme provides a feasible route towards quantum state transfer between optical photons and micromechanical resonators.Comment: 14 pages, 6 figure

    Anxiety mediates the relationship between perfectionism and insomnia symptoms: A longitudinal study

    Get PDF
    Objectives Individuals with insomnia often report aspects of perfectionism and symptoms of anxiety and depression. Investigation of these factors together has been limited. As such, the aim of the present study was to examine the extent to which the association between perfectionism and insomnia symptoms was mediated by anxiety and depression, concurrently and longitudinally. Methods Seventy-six members from the general-population participated at baseline. Data from 57 participants were subsequently analysed at twelve-month follow-up. Insomnia symptoms were assessed using The Insomnia Severity Index (ISI). Perfectionism was assessed using two Multidimensional Perfectionism Scales (F-MPS; HF-MPS). Symptoms of anxiety and depression were assessed using The Hospital Anxiety and Depression Scale (HADS). Correlational analysis examined longitudinal associations between perfectionism and insomnia symptoms. Hierarchical regression analysis examined whether significant associations remained after controlling for anxiety and depression. Results Baseline insomnia symptoms were associated with future doubts about action. Further, this relationship was mediated by preceding symptoms of anxiety and concurrent symptoms of insomnia. Similarly, baseline insomnia symptoms were also associated with future parental criticism. However this relationship was partially mediated by preceding symptoms of anxiety, and was not mediated by concurrent insomnia symptoms. Conclusions Symptoms of insomnia appear to be related to an increase in negative perfectionistic thinking in the form of doubts about action and parental criticism, however these relationships appear to be mediated by symptoms of anxiety. Therefore, treatments for insomnia should address anxiety symptoms with the prospect of preventing the accentuation of aspects of perfectionism due to poor sleep

    From Cavity Electromechanics to Cavity Optomechanics

    Full text link
    We present an overview of experimental work to embed high-Q mesoscopic mechanical oscillators in microwave and optical cavities. Based upon recent progress, the prospect for a broad field of "cavity quantum mechanics" is very real. These systems introduce mesoscopic mechanical oscillators as a new quantum resource and also inherently couple their motion to photons throughout the electromagnetic spectrum.Comment: 8 pages, 6 figures, ICAP proceedings submissio

    Anodic processes in dimethylsulfoxide water solution

    Get PDF

    Quantum interference in optical fields and atomic radiation

    Full text link
    We discuss the connection between quantum interference effects in optical beams and radiation fields emitted from atomic systems. We illustrate this connection by a study of the first- and second-order correlation functions of optical fields and atomic dipole moments. We explore the role of correlations between the emitting systems and present examples of practical methods to implement two systems with non-orthogonal dipole moments. We also derive general conditions for quantum interference in a two-atom system and for a control of spontaneous emission. The relation between population trapping and dark states is also discussed. Moreover, we present quantum dressed-atom models of cancellation of spontaneous emission, amplification on dark transitions, fluorescence quenching and coherent population trapping.Comment: To be published in Journal of Modern Optics Special Issue on Quantum Interferenc

    Combining Fine- and Coarse-Grained Classifiers for Diabetic Retinopathy Detection

    Full text link
    Visual artefacts of early diabetic retinopathy in retinal fundus images are usually small in size, inconspicuous, and scattered all over retina. Detecting diabetic retinopathy requires physicians to look at the whole image and fixate on some specific regions to locate potential biomarkers of the disease. Therefore, getting inspiration from ophthalmologist, we propose to combine coarse-grained classifiers that detect discriminating features from the whole images, with a recent breed of fine-grained classifiers that discover and pay particular attention to pathologically significant regions. To evaluate the performance of this proposed ensemble, we used publicly available EyePACS and Messidor datasets. Extensive experimentation for binary, ternary and quaternary classification shows that this ensemble largely outperforms individual image classifiers as well as most of the published works in most training setups for diabetic retinopathy detection. Furthermore, the performance of fine-grained classifiers is found notably superior than coarse-grained image classifiers encouraging the development of task-oriented fine-grained classifiers modelled after specialist ophthalmologists.Comment: Pages 12, Figures

    Initial-Phase Spectroscopy as a Control of Entangled Systems

    Full text link
    We introduce the concept of initial-phase spectroscopy as a control of the dynamics of entangled states encoded into a two-atom system interacting with a broadband squeezed vacuum field. We illustrate our considerations by examining the transient spectrum of the field emitted by two systems, the small sample (Dicke) and the spatially extended (non-Dicke) models. It is found that the shape of the spectral components depends crucially on the relative phase between the initial entangled state and the squeezed field. We follow the temporal evolution of the spectrum and show that depending on the relative phase a hole burning can occur in one of the two spectral lines. We compare the transient behavior of the spectrum with the time evolution of the initial entanglement and find that the hole burning can be interpreted as a manifestation of the phenomenon of entanglement sudden death. In addition, we find that in the case of the non-Dicke model, the collective damping rate may act like an artificial tweezer that rotates the phase of the squeezed field.Comment: 20 pages, 9 figure

    Stationary two-atom entanglement induced by nonclassical two-photon correlations

    Full text link
    A system of two two-level atoms interacting with a squeezed vacuum field can exhibit stationary entanglement associated with nonclassical two-photon correlations characteristic of the squeezed vacuum field. The amount of entanglement present in the system is quantified by the well known measure of entanglement called concurrence. We find analytical formulas describing the concurrence for two identical and nonidentical atoms and show that it is possible to obtain a large degree of steady-state entanglement in the system. Necessary conditions for the entanglement are nonclassical two-photon correlations and nonzero collective decay. It is shown that nonidentical atoms are a better source of stationary entanglement than identical atoms. We discuss the optimal physical conditions for creating entanglement in the system, in particular, it is shown that there is an optimal and rather small value of the mean photon number required for creating entanglement.Comment: 17 pages, 5 figure
    corecore