66 research outputs found

    Nonparametric survival analysis

    Get PDF

    Improved maximum likelihood estimators in a heteroskedastic errors-in-variables model

    Full text link
    This paper develops a bias correction scheme for a multivariate heteroskedastic errors-in-variables model. The applicability of this model is justified in areas such as astrophysics, epidemiology and analytical chemistry, where the variables are subject to measurement errors and the variances vary with the observations. We conduct Monte Carlo simulations to investigate the performance of the corrected estimators. The numerical results show that the bias correction scheme yields nearly unbiased estimates. We also give an application to a real data set.Comment: 12 pages. Statistical Paper

    Predicting Worst-Case Execution Time Trends in Long-Lived Real-Time Systems

    Get PDF
    In some long-lived real-time systems, it is not uncommon to see that the execution times of some tasks may exhibit trends. For hard and firm real-time systems, it is important to ensure these trends will not jeopardize the system. In this paper, we first introduce the notion of dynamic worst-case execution time (dWCET), which forms a new perspective that could help a system to predict potential timing failures and optimize resource allocations. We then have a comprehensive review of trend prediction methods. In the evaluation, we make a comparative study of dWCET trend prediction. Four prediction methods, combined with three data selection processes, are applied in an evaluation framework. The result shows the importance of applying data preprocessing and suggests that non-parametric estimators perform better than parametric methods

    Gene-Expression Signature Predicts Postoperative Recurrence in Stage I Non-Small Cell Lung Cancer Patients

    Get PDF
    About 30% stage I non-small cell lung cancer (NSCLC) patients undergoing resection will recur. Robust prognostic markers are required to better manage therapy options. The purpose of this study is to develop and validate a novel gene-expression signature that can predict tumor recurrence of stage I NSCLC patients. Cox proportional hazards regression analysis was performed to identify recurrence-related genes and a partial Cox regression model was used to generate a gene signature of recurrence in the training dataset −142 stage I lung adenocarcinomas without adjunctive therapy from the Director's Challenge Consortium. Four independent validation datasets, including GSE5843, GSE8894, and two other datasets provided by Mayo Clinic and Washington University, were used to assess the prediction accuracy by calculating the correlation between risk score estimated from gene expression and real recurrence-free survival time and AUC of time-dependent ROC analysis. Pathway-based survival analyses were also performed. 104 probesets correlated with recurrence in the training dataset. They are enriched in cell adhesion, apoptosis and regulation of cell proliferation. A 51-gene expression signature was identified to distinguish patients likely to develop tumor recurrence (Dxy = −0.83, P<1e-16) and this signature was validated in four independent datasets with AUC >85%. Multiple pathways including leukocyte transendothelial migration and cell adhesion were highly correlated with recurrence-free survival. The gene signature is highly predictive of recurrence in stage I NSCLC patients, which has important prognostic and therapeutic implications for the future management of these patients
    corecore