257 research outputs found

    Distinguishing coherent atomic processes using wave mixing

    Full text link
    We are able to clearly distinguish the processes responsible for enhanced low-intensity atomic Kerr nonlinearity, namely coherent population trapping and coherent population oscillations in experiments performed on the Rb D1 line, where one or the other process dominates under appropriate conditions. The potential of this new approach based on wave mixing for probing coherent atomic media is discussed. It allows the new spectral components to be detected with sub-kHz resolution, which is well below the laser linewidth limit. Spatial selectivity and enhanced sensitivity make this method useful for testing dilute cold atomic samples.Comment: 9 pages, 5 figure

    Steep anomalous dispersion in coherently prepared Rb vapor

    Full text link
    Steep dispersion of opposite signs in driven degenerate two-level atomic transitions have been predicted and observed on the D2 line of 87Rb in an optically thin vapor cell. The intensity dependence of the anomalous dispersion has been studied. The maximum observed value of anomalous dispersion [dn/dnu ~= -6x10^{-11}Hz^{-1}] corresponds to anegative group velocity V_g ~= -c/23000.Comment: 4 pages, 4 figure

    Absorption resonance and large negative delay in Rb vapor with buffer gas

    Full text link
    We observe a narrow, isolated, two-photon absorption resonance in Rb for large one-photon detuning in the presence of a buffer gas. In the absence of buffer gas, a standard Lambda configuration of two laser frequencies gives rise to electromagnetically induced transparency (EIT) for all values of one-photon detuning throughout the inhomogeneously (Doppler) broadened line. However, when a buffer gas is added and the one-photon detuning is comparable to or greater than the Doppler width, an absorption resonance appears instead of the usual EIT resonance. We also observe large negative group delay (~ -300 us for a Gaussian pulse propagating through the media with respect to a reference pulse not affected by the media), corresponding to a superluminal group velocity v_g= -c/(3.6x10^6)=-84 m/s.Comment: 4 pages, 5 figure

    Enhanced frequency up-conversion in Rb vapor

    Get PDF
    We demonstrate highly efficient generation of coherent 420nm light via up-conversion of near-infrared lasers in a hot rubidium vapor cell. By optimizing pump polarizations and frequencies we achieve a single-pass conversion efficiency of 260% per Watt, significantly higher than in previous experiments. A full exploration of the coherent light generation and fluorescence as a function of both pump frequencies reveals that coherent blue light is generated close to 85Rb two-photon resonances, as predicted by theory, but at high vapor pressure is suppressed in spectral regions that do not support phase matching or exhibit single-photon Kerr refraction. Favorable scaling of our current 1mW blue beam power with additional pump power is predicted.Comment: 6 pages, 4 figures. Modified to include referees' improvement

    Propagation of Raman-matched laser pulses through a Bose-Einstein condensate

    Full text link
    We investigate the role of non-uniform spatial density profiles of trapped atomic Bose-Einstein condensates in the propagation of Raman-matched laser pulses under conditions for electromagnetically induced transparency (EIT). We find that the sharp edged axial density profile of an interacting condensate (due to a balance between external trap and repulsive atomic interaction) is advantageous for obtaining ultra slow averaged group velocities. Our results are in good quantitative agreement with a recent experiment report [Nature {\bf 397}, 594 (1999)].Comment: 19 pages, 11 figures, to be published in Opt. Commu

    Two-pulse interference and superluminality

    Get PDF
    We examine how the interference of a coherent light-pulse with its slightly time-delayed copy may generate a pulse nearly identical to the original one and ahead of it. The simplicity of this 2-pulse system enabled us to obtain exact analytic expressions of the pulse distortion, valid for a wide class of pulse shapes. Explicit results are given for the pulses usually considered (gaussian, hyperbolic secant) but also for more realistic pulses of strictly limited duration. We finally show that the efficiency of the 2-pulse system is comparable to that of the other superluminal systems, at least for the pulse advancements actually demonstrated in the optical experiments

    Features of Magneto-Optical Resonances in an Elliptically Polarized Traveling Light Wave

    Get PDF
    The parameters of nonlinear absorption magneto-optical resonances in the Hanle configuration have been studied as functions of the ellipticity of a traveling light wave. It has been found that these parameters (amplitude, width, and amplitude-to-width ratio) depend strongly on the polarization of the light wave. In particular, the resonance amplitude can increase by more than an order of magnitude when the polarization changes from linear to optimal elliptic. It has been shown that this effect is associated with the Doppler frequency shift for atoms in a gas. The theoretical results have been corroborated in experiments in Rb vapor.Comment: 5 page
    corecore