194 research outputs found

    Collective charge density wave motion through an ensemble of Aharonov-Bohm rings

    Full text link
    We investigate theoretically the collective charge density wave motion through an ensemble of small disordered Aharonov-Bohm rings. It is shown that the magnetic flux modulates the threshold field and the magnetoresistance with a half flux quantum periodicity Φ0/2=h/2e\Phi_{0}/2=h/2e, resulting from ensemble averaging over random scattering phases of multiple rings. The magnitude of the magnetoresistance oscillations decreases rapidly with increasing bias. This is consistent with recent experiments on NbSe3NbSe_3 in presence of columnar defects [Phys. Rev. Lett. 78, 919 (1997)].Comment: 4 pages Revtex, 2 figures. Submitted to Phys. Rev. Let

    A minimal approach for the local statistical properties of a one-dimensional disordered wire

    Full text link
    We consider a one-dimensional wire in gaussian random potential. By treating the spatial direction as imaginary time, we construct a `minimal' zero-dimensional quantum system such that the local statistical properties of the wire are given as products of statistically independent matrix elements of the evolution operator of the system. The space of states of this quantum system is found to be a particular non-unitary, infinite dimensional representation of the pseudo-unitary group, U(1,1). We show that our construction is minimal in a well defined sense, and compare it to the supersymmetry and Berezinskii techniques.Comment: 10 pages, 0 figure

    Anisotropic weakly localized transport in nitrogen-doped ultrananocrystalline diamond films

    Full text link
    We establish the dominant effect of anisotropic weak localization (WL) in three dimensions associated with a propagative Fermi surface, on the conductivity correction in heavily nitrogen doped ultrananocrystalline diamond (UNCD) films based on magneto-resistance studies at low temperatures. Also, low temperature electrical conductivity can show weakly localized transport in 3D combined with the effect of electron-electron interactions in these materials, which is remarkably different from the conductivity in 2DWL or strong localization regime. The corresponding dephasing time of electronic wavefunctions in these systems described as ~ T^-p with p < 1, follows a relatively weak temperature dependence compared to the generally expected nature for bulk dirty metals having p1p \geq 1. The temperature dependence of Hall (electron) mobility together with an enhanced electron density has been used to interpret the unusual magneto-transport features and show delocalized electronic transport in these n-type UNCD films, which can be described as low-dimensional superlattice structures.Comment: 27 pages, 6 figures, To be published in Physical Review

    The Amplitude of Non-Equilibrium Quantum Interference in Metallic Mesoscopic Systems

    Full text link
    We study the influence of a DC bias voltage V on quantum interference corrections to the measured differential conductance in metallic mesoscopic wires and rings. The amplitude of both universal conductance fluctuations (UCF) and Aharonov-Bohm effect (ABE) is enhanced several times for voltages larger than the Thouless energy. The enhancement persists even in the presence of inelastic electron-electron scattering up to V ~ 1 mV. For larger voltages electron-phonon collisions lead to the amplitude decaying as a power law for the UCF and exponentially for the ABE. We obtain good agreement of the experimental data with a model which takes into account the decrease of the electron phase-coherence length due to electron-electron and electron-phonon scattering.Comment: New title, refined analysis. 7 pages, 3 figures, to be published in Europhysics Letter

    Exact results for one-dimensional disordered bosons with strong repulsion

    Get PDF
    We study one-dimensional incommensurate bosons with strong repulsive interactions and weak disorder. In analogy to the clean Tonks-Girardeau gas, a Bose-Fermi mapping expresses this problem in terms of disordered free fermions. Thereby many known results apply, in particular for the density-density correlations, the distribution function of the local density of states, and the complete spectral statistics. We also analyze the bosonic momentum distribution, and comment on the experimental observability of these predictions in ultracold atomic gases.Comment: 5 pages, 2 figures, published versio

    What is the Thouless Energy for Ballistic Systems?

    Full text link
    The Thouless energy, \Ec characterizes numerous quantities associated with sensitivity to boundary conditions in diffusive mesoscopic conductors. What happens to these quantities if the disorder strength is decreased and a transition to the ballistic regime takes place? In the present analysis we refute the intuitively plausible assumption that \Ec loses its meaning as an inverse diffusion time through the system at hand, and generally disorder independent scales take over. Instead we find that a variety of (thermodynamic) observables are still characterized by the Thouless energy.Comment: 4 pages REVTEX, uuencoded file. To appear in Physical Review Letter

    Direct measurement of the phase coherence length in a GaAs/GaAlAs square network

    Full text link
    The low temperature magnetoconductance of a large array of quantum coherentloops exhibits Altshuler-Aronov-Spivak oscillations which periodicitycorresponds to 1/2 flux quantum per loop.We show that the measurement of the harmonics content in a square networkprovides an accurate way to determine the electron phase coherence lengthL_ϕL\_{\phi} in units of the lattice length without any adjustableparameters.We use this method to determine L_ϕL\_{\phi} in a network realised from a 2Delectron gas (2DEG) in a GaAS/GaAlAs heterojunction. The temperaturedependence follows a power law T1/3T^{-1/3} from 1.3 K to 25 mK with nosaturation, as expected for 1D diffusive electronic motion andelectron-electron scattering as the main decoherence mechanism.Comment: Additional experimental data in version

    Mesoscopic effects in superconductor-ferromagnet-superconductor junctions

    Full text link
    We show that at zero temperature the supercurrent through the superconductor - ferromagnetic metal - superconductor junctions does not decay exponentially with the thickness LL of the junction. At large LL it has a random sample-specific sign which can change with a change in temperature. In the case of mesoscopic junctions the phase of the order parameter in the ground state is a random sample-specific quantity. In the case of junctions of large area the ground state phase difference is ±π/2\pm \pi/2.Comment: 4 pages, 1 figur

    Random-Matrix Theory of Quantum Size Effects on Nuclear Magnetic Resonance in Metal Particles

    Full text link
    The distribution function of the local density of states is computed exactly for the Wigner-Dyson ensemble of random Hamiltonians. In the absence of time-reversal symmetry, precise agreement is obtained with the "supersymmetry" theory by Efetov and Prigodin of the NMR lineshape in disordered metal particles. Upon breaking time-reversal symmetry, the variance of the Knight shift in the smallest particles is reduced by a universal factor of 2/3. ***To be published in Physical Review B.****Comment: 4 pages, REVTeX-3.0, 1 postscript figure, INLO-PUB-940819; [2017: figure included in text

    Effects of Magnetic Field on Josephson Current in SNS System

    Full text link
    The effect of a magnetic field on Josephson current has been studied for a superconductor/normal-metal/superconductor (SNS) system, where N is a two-dimensional electron gas in a confining potential. It is found that the dependence of Josephson currents on the magnetic field are sensitive to the width of the normal metal. If the normal metal is wide and contains many channels (subbands), the current on a weak magnetic field shows a dependence similar to a Fraunhofer-pattern in SIS system and, as the field gets strong, it shows another type of oscillatory dependence on the field resulting from the Aharonov-Bohm interference between the edge states. As the number of channels decreases (i.e. normal metal gets narrower), however, the dependence in the region of the weak field deviates from a clear Fraunhofer pattern and the amplitude of the oscillatory dependence in the region of the strong field is reduced.Comment: 14 pages, 9 figure
    corecore