39 research outputs found
Recommended from our members
Thin, flexible supercapacitors made from carbon nanofiber electrodes decorated at room temperature with manganese oxide nanosheets
We report the fabrication and electrochemical performance of a flexible thin film supercapacitor with a novel nanostructured composite electrode. The electrode was prepared byin situcoprecipitation of two-dimensional (2D) MnO2nanosheets at room temperature in the presence of carbon nanofibers (CNFs). The highest specific capacitance of 142 F/g was achieved for CNFs-MnO2electrodes in sandwiched assembly with PVA-H4SiW12O40·nH2O polyelectrolyte separator.Peer Reviewe
Photo-oxidative enhancement of polymeric molecular sieve membranes
High-performance membranes are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. The next-generation membranes for these processes are based on molecular sieving materials to simultaneously achieve high throughput and selectivity. Membranes made from polymeric molecular sieves such as polymers of intrinsic microporosity (pore size<2 nm) are especially interesting in being solution processable and highly permeable but currently have modest selectivity. Here we report photo-oxidative surface modification of membranes made of a polymer of intrinsic microporosity. The ultraviolet light field, localized to a near-surface domain, induces reactive ozone that collapses the microporous polymer framework. The rapid, near-surface densification results in asymmetric membranes with a superior selectivity in gas separation while maintaining an apparent permeability that is two orders of magnitude greater than commercially available polymeric membranes. The oxidative chain scission induced by ultraviolet irradiation also indicates the potential application of the polymer in photolithography technology.Scopus2-s2.0-8487868983
DESORPTION ISOTHERMS AND THERMODYNAMIC PROPERTIES OF FRESH AND OSMOTIC-ULTRASONIC DEHYDRATED QUINCES
Carbon xerogels as electrodes for supercapacitors. The influence of the catalyst concentration on the microstructure and on the electrochemical properties
Carbon nanotubes/carbon xerogel-nafion electrodes: a comparative study of preparation methods
Effect of composition, solvent exchange liquid and drying method on the porous structure of phenol-formaldehyde gels
Organic gels have been synthesized by sol-gel polycondensation of phenol (P) and formaldehyde (F) catalyzed by sodium carbonate (C). The effect of synthesis parameters such as phenol/catalyst ratio (P/C), solvent exchange liquid and drying method, on the porous structure of the gels have been investigated. The total and mesopore volumes of the PF gels increased with increasing P/C ratio in the range of P/C a parts per thousand currency sign 8, after this both properties started to decrease with P/C ratio for P/C > 8 and the gel with P/C = 8 showed the highest total and mesopore volumes of 1.281 and 1.279 cm(3) g(-1) respectively. The gels prepared by freeze drying possessed significantly higher porosities than the vacuum dried gels. The pore volume and average pore diameter of the freeze dried gels were significantly higher than those of the vacuum dried gels. T-butanol emerged as the preferred solvent for the removal of water from the PF hydrogel prior to drying, as significantly higher pore volumes and specific surface areas were obtained in the corresponding dried gels. The results showed that freeze drying with t-butanol and lower P/C ratios were favourable conditions for the synthesis of highly mesoporous phenol-formaldehyde gels
