79 research outputs found
PC-Based Automated Control System for Jordan Northern Grain Silo
This paper presents a PC-based automated control system operation of the Northern Grain Silo of Jordan. The system connects to a PLC (programmable logic controller) device, and combines operator interface, PLC programming and monitoring functions into one platform. The PLC portion handles direct operations control, while the PC portion handles interfacing and data intensive functions. A simulation package is developed. The package generates a graphical user interface for real-time graphic animations of the Grain Silo operation. We discuss anticipated benefits of such a system and phases of implementation
Internationalization Context of Arabia Higher Education
Internationalization in Arabia higher education space is expanding rapidly. It has taken different shapes with no systematic approach to evaluate its success and impact. By analysing patterns of mobility; trends; and forms of academic cooperation in Arabia, a framework for internationalization is introduced. The purpose is to guide efforts towards a strengthened position of higher education in the international dimension. Internationalization promotes the idea of making the university a dynamic cross-boarder educational environment. The higher education space in Arabia is analysed mainly in the internationalization perspective. The German Jordanian University is presented as an illustrative example. The objective is to draw on its experience as a benchmark for devising a workable scenario for implementing internationalization as an important dimension of higher education. The results show the importance of the derived benefits of study abroad, program cooperation, partnership, internship, and research collaboration as essential ingredients of internationalization in higher education systems
Interoperable e-Infrastructure Services in Arabia
e-Infrastructures became critical platforms that integrate computational resources, facilities and repositories globally. The coordination and harmonization of advanced e-Infrastructure project developed with partners from Europe, Latin America, Arabia, Africa, China, and India contributed to developing interoperable platforms based on identity federation and science gateway technologies. This paper presents these technologies to support key services in the development of Arabia networking and services platform for research and education. The platform provides scientists, teachers, and students with seamless access to a variety of advanced resources, services, and applications available at regional e-Infrastructures in Europe and elsewhere. Users simply enter the credentials provided by their home institutions to get authenticated and do not need digital certificate-based mechanisms. Twenty applications from five scientific domains were deployed and integrated. Results showed that on average about 35,000 monthly jobs are running for a total of about 17,500 CPU wall-clock hours. Therefore, seamlessly integrated e-Infrastructures for regional e-Science activities are important resources that support scientists, students, and faculty with computational services and linkage to global research communities
Agents for Smart Power Grids
The future of electricity systems will compose of small-scale generation and distribution where end-users will be active participants with localized energy management systems that are able to interact on a free energy market. Software agents will most likely control power assets and interact together to decide the best and safest configuration of the power grid system. This paper presents a design of agents that can be deployed in real-time with capabilities that include optimization of resources, intensive computation, and appropriate decision-making. Jordan 51-bus system has been used for simulation with a total generation capacity of 4050 MW of which 230 MW represents renewable energy. The economic analyses demonstrated the use of smart grid technologies with 2016 generation—load profiles for nominal liquified gas (NLG) prices and ±20% sensitivity analysis. The results have shown variations in the range of 1% in the price of MWh with smart grid technologies. These variations are mainly driven by the fact that agents shift power generation to renewable power plants to produce maximum power at peak hours. As a result, there is a positive economic impact in both NLG ± 20% sensitivity analysis, due to the fact that agents coordinate to better displace expensive thermal generation with renewable generation. It is evident that renewable resources compensate for power at peak times and provide economic benefits and savings
Real-Time Operation of Microgrids
Microgrid (MG) systems effectively integrate a generation mix of solar, wind, and other renewable energy resources. The intermittent nature of renewable resources and the unpredictable weather conditions contribute largely to the unreliability of microgrid real-time operation. This paper investigates the behavior of microgrid for different intermittent scenarios of photovoltaic generation in real-time. Reactive power coordination control and load shedding mechanisms are used for reliable operation and are implemented using OPAL-RT simulator integrated with Matlab. In an islanded MG, load shedding can be an effective mechanism to maintain generation-load balance. The microgrid of the German Jordanian University (GJU) is used for illustration. The results show that reactive power coordination control not only stabilizes the MG operation in real-time but also reduces power losses on transmission lines. The results also show that the power losses at some substations are reduced by a range of 6% - 9.8%
Multi-Agents for Microgrids
Microgrid systems are built to integrate a generation mix of solar and wind renewable energy resources that are generally intermittent in nature. This paper presents a novel decentralized multi-agent system to securely operate microgrids in real-time while maintaining generation, load balance. Agents provide a normal operation in a grid-connected mode and a contingency operation in an islanded mode for fault handling. Fault handling is especially critical in microgrid operation to simulate possible contingencies and microgrid outages in a real-world scenario. A robust agent design has been implemented using MATLAB-Simulink and Java Agent Development Framework technologies to simulate microgrids with load management and distributed generators control. The microgrid of the German Jordanian University has been used for simulation for Summer and Winter photovoltaic generation and load profiles. The results show agent capabilities to operate microgrid in real-time and its ability to coordinate and adjust generation and load. In a simulated fault incident, agents coordinate and adjust to a normal operation in 0.012 seconds, a negligible time for microgrid restoration. This clearly shows that the multi-agent system is a viable solution to operate MG in real-time
Renewing the Budget: Recommendations for Louisiana’s Renewable Energy Tax Credit
Long-term operation of energy systems is a complex optimization task. Often, such long-term operational optimizations are solved by direct decomposing the problem into smaller subproblems. However, direct decomposition is not possible for problems with time-coupling constraints and variables. Such time-coupling is common in energy systems, e.g., due to peak power prices and (seasonal) energy storage. To efficiently solve coupled long-term operational optimization problems, we propose a time-series decomposition method. The proposed method calculates lower and upper bounds to obtain a feasible solution of the original problem with known quality. We compute lower bounds by the Branch-and-Cut algorithm. For the upper bound, we decompose complicating constraints and variables into smaller subproblems. The solution of these subproblems are recombined to obtain a feasible solution for the long-term operational optimization. To tighten the upper bound, we iteratively decrease the number of subproblems. In a case study for an industrial energy system, we show that the proposed time-series decomposition method converges fast, outperforming a commercial state-of-the-art solver
Supply curve bidding of electricity in constrained power networks
This paper presents a Supply Curve Bidding (SCB) approach that complies with the notion of the Standard Market Design (SMD) in electricity markets. The approach considers the demand-side option and Locational Marginal Pricing (LMP) clearing. It iteratively alters Supply Function Equilibria (SFE) model solutions, then choosing the best bid based on market-clearing LMP and network conditions. It has been argued that SCB better benefits suppliers compared to fixed quantity-price bids. It provides more flexibility and better opportunity to achieving profitable outcomes over a range of demands. In addition, SCB fits two important criteria: simplifies evaluating electricity derivatives and captures smooth marginal cost characteristics that reflect actual production costs. The simultaneous inclusion of physical unit constraints and transmission security constraints will assure a feasible solution. An IEEE 24-bus system is used to illustrate perturbations of SCB in constrained power networks within the framework of SDM. By searching in the neighborhood of SFE model solutions, suppliers can obtain their best bid offers based on market-clearing LMP and network conditions. In this case, electricity producers can derive their best offering strategy both in the power exchange and the long-term contractual markets within a profitable, yet secure electricity market
ASREN regional perspective towards enhanced e-infrastructures for research and education © 2013 ASREN, GmbH, All Rights Reserved UbuntuNet Connect 2013 – Kigali, Rwanda 14.11.2013 Page
Workforce Assessment in the Jordanian ICT Industry
This paper provides an assessment of workforce need in the Jordanian ICT industry. The results have shown that there is a growing workforce gap in the ICT sector. The technical skills of graduates are not satisfactory, and there is an increasing demand for skilled graduates. In addition to the technical skills required, communication skills, creative thinking, and English language skills were seen as important “soft skill elements” across all job categories and are missing in the current ICT workforce. The skills and competencies identified in this study can be used to motivate a design of an effective, flexible and relevant ICT program that can contribute to building a skillful workforce focusing on specialized and hands-on practices in ICT domains
- …
