630 research outputs found

    The Drosophila immunoglobulin gene turtle encodes guidance molecules involved in axon pathfinding

    Get PDF
    Background: Neuronal growth cones follow specific pathways over long distances in order to reach their appropriate targets. Research over the past 15 years has yielded a large body of information concerning the molecules that regulate this process. Some of these molecules, such as the evolutionarily conserved netrin and slit proteins, are expressed in the embryonic midline, an area of extreme importance for early axon pathfinding decisions. A general model has emerged in which netrin attracts commissural axons towards the midline while slit forces them out. However, a large number of commissural axons successfully cross the midline even in the complete absence of netrin signaling, indicating the presence of a yet unidentified midline attractant. Results: The evolutionarily conserved Ig proteins encoded by the turtle/Dasm1 genes are found in Drosophila, Caenorhabditis elegans, and mammals. In Drosophila the turtle gene encodes five proteins, two of which are diffusible, that are expressed in many areas, including the vicinity of the midline. Using both molecular null alleles and transgenic expression of the different isoforms, we show that the turtle encoded proteins function as non-cell autonomous axonal attractants that promote midline crossing via a netrin-independent mechanism. turtle mutants also have either stalled or missing axon projections, while overexpression of the different turtle isoforms produces invasive neurons and branching axons that do not respect the histological divisions of the nervous system. Conclusion: Our findings indicate that the turtle proteins function as axon guidance cues that promote midline attraction, axon branching, and axonal invasiveness. The latter two capabilities are required by migrating axons to explore densely packed targets

    Genetics of fat storage in flies and worms: what went wrong?

    Get PDF
    Body weight and fat storage are strongly influenced by an individual’s genetic makeup. In humans, genetic polymorphisms have been identified that have effects on body mass index (BMI) and fat content (Meyre et al., 2009; Speliotes et al., 2010; Choquet and Meyre, 2011a), and studies of monogenic rodent models of obesity have defined a variety of genes and signaling pathways that control fat storage and metabolism (Barsh and Schwartz, 2002). However, many other genes that regulate these processes undoubtedly remain to be discovered. Although forward genetic screens in the mouse have the potential to identify new obesity genes, such screens are expensive and lengthy endeavors

    Colorimetric Measurement of Triglycerides Cannot Provide an Accurate Measure of Stored Fat Content in Drosophila

    Get PDF
    Drosophila melanogaster has recently emerged as a useful model system in which to study the genetic basis of regulation of fat storage. One of the most frequently used methods for evaluating the levels of stored fat (triglycerides) in flies is a coupled colorimetric assay available as a kit from several manufacturers. This is an aqueous-based enzymatic assay that is normally used for measurement of mammalian serum triglycerides, which are present in soluble lipoprotein complexes. In this short communication, we show that coupled colorimetric assay kits cannot accurately measure stored triglycerides in Drosophila. First, they fail to give accurate readings when tested on insoluble triglyceride mixtures with compositions like that of stored fat, or on fat extracted from flies with organic solvents. This is probably due to an inability of the lipase used in the kits to efficiently cleave off the glycerol head group from fat molecules in insoluble samples. Second, the measured final products of the kits are quinoneimines, which absorb visible light in the same wavelength range as Drosophila eye pigments. Thus, when extracts from crushed flies are assayed, much of the measured signal is actually due to eye pigments. Finally, the lipoprotein lipases used in colorimetric assays also cleave non-fat glycerides. The glycerol backbones liberated from all classes of glycerides are measured through the remaining reactions in the assay. As a consequence, when these assay kits are used to evaluate tissue extracts, the observed signal actually represents the amount of free glycerols together with all types of glycerides. For these reasons, findings obtained through use of coupled colorimetric assays on Drosophila samples must be interpreted with caution. We also show here that using thin-layer chromatography to measure stored triglycerides in flies eliminates all of these problems

    Experimental and Computational Analysis of a Large Protein Network That Controls Fat Storage Reveals the Design Principles of a Signaling Network

    Get PDF
    An approach combining genetic, proteomic, computational, and physiological analysis was used to define a protein network that regulates fat storage in budding yeast (Saccharomyces cerevisiae). A computational analysis of this network shows that it is not scale-free, and is best approximated by the Watts-Strogatz model, which generates “small-world” networks with high clustering and short path lengths. The network is also modular, containing energy level sensing proteins that connect to four output processes: autophagy, fatty acid synthesis, mRNA processing, and MAP kinase signaling. The importance of each protein to network function is dependent on its Katz centrality score, which is related both to the protein’s position within a module and to the module’s relationship to the network as a whole. The network is also divisible into subnetworks that span modular boundaries and regulate different aspects of fat metabolism. We used a combination of genetics and pharmacology to simultaneously block output from multiple network nodes. The phenotypic results of this blockage define patterns of communication among distant network nodes, and these patterns are consistent with the Watts-Strogatz model

    Mass transfer characteristics of two-aqueous-phase liquid-liquid mixtures

    Get PDF
    Mass transfer rates were studied using the falling drop method. Cibacron Blue 3 GA dye was the transferring solute from the salt phase to the PEG phase. Measurements were undertaken for several concentrations of the dye and the phase-forming solutes and with a range of different drop sizes, e.g. 2.8, 3.0 and 3.7 mm. The dye was observed to be present in the salt phase as finely dispersed solids but a model confirmed that the mass transfer process could still be described by an equation based upon the Whitman two-film model. The overall mass transfer coefficient increased with increasing concentration of the dye. The apparent mass transfer coefficient ranged from 1 x 10-5 to 2 x 10 -4 m/s. Further experiments suggested that mass transfer was enhanced at high concentration by several mechanisms. The dye was found to change the equilibrium composition of the two phases, leading to transfer of salt between the drop and continuous phases. It also lowered the interfacial tension (i.e. from 1.43 x 10-4 N/m for 0.01% w/w dye concentration to 1.07 x 10-4 N/m for 0.2% w/w dye concentration) between the two phases, which could have caused interfacial instabilities (Marangoni effects). The largest drops were deformable, which resulted in a significant increase in the mass transfer rate. Drop size distribution and Sauter mean drop diameter were studied on-line in a 1 litre agitated vessel using a laser diffraction technique. The effects of phase concentration, dispersed phase hold-up and impeller speed were investigated for the salt-PEG system. An increase in agitation speed in the range 300 rpm to 1000 rpm caused a decrease in mean drop diameter, e.g. from 50 m to 15 m. A characteristic bimodal drop size distribution was established within a very short time. An increase in agitation rate caused a shift of the larger drop size peak to a smaller size

    Anti-fouling double-skinned forward osmosis membrane with zwitterionic brush for oily wastewater treatment

    Get PDF
    Despite its attractive features for energy saving separation, the performance of forward osmosis (FO) has been restricted by internal concentration polarization and fast fouling propensity that occur in the membrane sublayer. These problems have significantly affected the membrane performance when treating highly contaminated oily wastewater. In this study, a novel double-skinned FO membrane with excellent anti-fouling properties has been developed for emulsified oil-water treatment. The double-skinned FO membrane comprises a fully porous sublayer sandwiched between a highly dense polyamide (PA) layer for salt rejection and a fairly loose dense bottom zwitterionic layer for emulsified oil particle removal. The top dense PA layer was synthesized via interfacial polymerization meanwhile the bottom layer was made up of a zwitterionic polyelectrolyte brush-(poly(3-(N-2-methacryloxyethyl-N,N-dimethyl) ammonatopropanesultone), abbreviated as PMAPS layer. The resultant double-skinned membrane exhibited a high water flux of 13.7 ± 0.3 L/m2.h and reverse salt transport of 1.6 ± 0.2 g/m2.h under FO mode using 2 M NaCl as the draw solution and emulsified oily solution as the feed. The double-skinned membrane outperforms the single-skinned membrane with much lower fouling propensity for emulsified oil-water separation

    A Study of Z-Transform Based Encryption Algorithm

    Get PDF
    It has become increasingly important to ensure the protection of information, especially data in transit. Therefore, it is the primary goal of any encryption algorithm to safeguard the protection of information against security attacks. It is equally important to design high-performance solutions with affordable cost of implementation. Encryption algorithms are used to transform plain text to the ciphertext in order to protect privacy, prevent data fraud, and prevent unauthorized access of data in daily transactions. There are multiple types of encryption algorithms, each with its niche tactics to enhance security. For instance, different kinds of algorithms include but are not limited to the following: Blowfish, RSA, AES, DES, Triple DES. This paper contributes an efficient and secure encryption algorithm technique for information security based on Z transformation and XOR function known as the Z Transformation Encryption (ZTE) technique. To elaborate, this technique implements concepts of Z transformation and XOR operations at the source. The reverse process is applied at the receiving end of the transaction wherein the inverse of Z transformation and XOR is applied to reveal the original plain text message. The simulation of the proposed algorithm is conducted using the R language. The results show a promising performance comparing to other symmetric algorithms

    The Impact of Digital Modernity on Administrative Performance in Saudi Universities

    Get PDF
    The study aimed to assess the impact of digital modernity on administrative performance at Northern Border University, Saudi Arabia. The research involved 788 employees and a sample of 395 individuals. The study used a descriptive approach and SPSS program to analyze data. Results showed that the university's contribution to employee awareness of digital systems in administrative work was significant, with a mean of 4.41. However, there was a discrepancy around the axis of digital modernity. The study also found that digital transformation contributed to the development of administrative performance, with a mean of 4.07, indicating agreement. The advantages and constraints of digital modernity on administrative performance were also agreed upon. The study recommends meeting the needs of digital transformation and supporting the process to keep pace with global development

    Renal neuroendocrine control of desiccation and cold tolerance by Drosophila suzukii

    Get PDF
    Background: Neuropeptides are central to the regulation of physiological, and behavioural processes in insects, directly impacting cold and desiccation survival. However, little is known about the control mechanisms governing these responses in D. suzukii. The close phylogenetic relationship of D. suzukii with D. melanogaster allows, through genomic and functional studies, an insight into the mechanisms directing stress tolerance in D. suzukii. Results: Capa, Leucokinin, DH44 and DH31 neuropeptides demonstrate a high level of conservation between D. suzukii and D. melanogaster with respect to peptide sequences, neuronal expression, receptor localisation, and diuretic function in the Malpighian tubules. Despite D. suzukii’s ability to populate cold environments, they proved sensitive to both cold and desiccation. Furthermore, in D. suzukii, Capa acts as a desiccation-and cold stress-responsive gene, while DH44 gene expression is increased only after desiccation exposure, and the LK gene after nonlethal cold stress recovery. Conclusion: This study provides a comparative investigation into stress tolerance mediation by neuroendocrine signalling in two Drosophila species, providing evidence that similar signalling pathways control fluid secretion in the Malpighian tubules. Identifying processes governing specific environmental stresses affecting D. suzukii could lead to the development of targeted integrated management strategies to control insect pest populations
    corecore