117 research outputs found
Detection of fake news in the Syrian war.
Thesis. M.S. American University of Beirut. Department of Computer Science, 2019. T:6926Advisor : Dr. Fatima Abu Salem, Associate Professor, Computer Science ; Committee members : Dr. Shady Elbassuoni, Assistant Professor, Computer Science ; Dr. Mohamad Jaber, Assistant Professor, Computer Science ; Dr. May Farah, Assistant Professor, Media Studies.Includes bibliographical references (leaves 85-90)After almost eight years of conflict, the humanitarian situation in Syria continues to deteriorate year after year. With multiple opposing parties involved in the armed conflict, much of the news reported about the Syrian war seems to be biased or inclined to support a certain party over the others. With serious human rights violations taking place in the Syrian war, and news sources blaming different sides of the conflict for these violations, interest in the detection of fake news surrounds the Syrian war. In this work, we built a streaming and scraping model to extract news articles of interest from news sources' websites. We built a labeled dataset of news articles about the Syrian conflict. Finally, we built a feature extraction model along with a machine learning model that is able to detect fake news in the Syrian conflict and generalize to other types of fake news
MANUFACTURE CONTRACT (ISTISNA’A), CONCEPT, IMPORTANCE & RISKS
Purpose of the study: This research deals with Manufacture Contract (Istisna'a contracts) Arabic (الإستصناع) in terms of their concept, importance, and risks related to them; as one of the means used by Islamic banks to meet the individuals special needs of goods and products that require special specifications.
Methodology: The study is based on the descriptive approach that gave a clear picture of Istisna'a is a contract and as a financing formula. It is meant by the terms and conditions of its validity and legitimacy, distinguishing it from the other financing forms witnessed by the banking reality, the methods and procedures of its application and its importance.
Results: it does not stipulate what is required in the peace contract to accelerate the price, a contract that recognizes contemporary jurisprudence in need of modification and development to be removed from its traditional image to a new image through which it is able to accommodate the fate Greater than the requirements for industrial finance. Given the importance of this contract in the field of industrial investments carried out by Islamic banks, the many questions that may be raised about its legitimacy, its relevance to other contracts, the risks faced by banks in applying it, and the solutions that must be prepared to address it, we have chosen it to be the subject of this study.
Applications of this study: This research can be used for the universities, teachers, and students.
Novelty/Originality of this study: In this research, the model of Manufacture Contract (Istisna’a), Concept, Importance & Risks is presented in a comprehensive and complete manner
Using Facebook advertising data to describe the socio-economic situation of Syrian refugees in Lebanon
While the fighting in the Syrian civil war has mostly stopped, an estimated 5.6 million Syrians remain living in neighboring countries1. Of these, an estimated 1.5 million are sheltering in Lebanon. Ongoing efforts by organizations such as UNHCR to support the refugee population are often ineffective in reaching those most in need. According to UNHCR's 2019 Vulnerability Assessment of Syrian Refugees Report (VASyR), only 44% of the Syrian refugee families eligible for multipurpose cash assistance were provided with help, as the others were not captured in the data. In this project, we are investigating the use of non-traditional data, derived from Facebook advertising data, for population level vulnerability assessment. In a nutshell, Facebook provides advertisers with an estimate of how many of its users match certain targeting criteria, e.g., how many Facebook users currently living in Beirut are “living abroad,” aged 18–34, speak Arabic, and primarily use an iOS device. We evaluate the use of such audience estimates to describe the spatial variation in the socioeconomic situation of Syrian refugees across Lebanon. Using data from VASyR as ground truth, we find that iOS device usage explains 90% of the out-of-sample variance in poverty across the Lebanese governorates. However, evaluating predictions at a smaller spatial resolution also indicate limits related to sparsity, as Facebook, for privacy reasons, does not provide audience estimates for fewer than 1,000 users. Furthermore, comparing the population distribution by age and gender of Facebook users with that of the Syrian refugees from VASyR suggests an under-representation of Syrian women on the social media platform. This work adds to growing body of literature demonstrating the value of anonymous and aggregate Facebook advertising data for analysing large-scale humanitarian crises and migration events
Using Facebook advertising data to describe the socio-economic situation of Syrian refugees in Lebanon
While the fighting in the Syrian civil war has mostly stopped, an estimated 5.6 million Syrians remain living in neighboring countries1. Of these, an estimated 1.5 million are sheltering in Lebanon. Ongoing efforts by organizations such as UNHCR to support the refugee population are often ineffective in reaching those most in need. According to UNHCR's 2019 Vulnerability Assessment of Syrian Refugees Report (VASyR), only 44% of the Syrian refugee families eligible for multipurpose cash assistance were provided with help, as the others were not captured in the data. In this project, we are investigating the use of non-traditional data, derived from Facebook advertising data, for population level vulnerability assessment. In a nutshell, Facebook provides advertisers with an estimate of how many of its users match certain targeting criteria, e.g., how many Facebook users currently living in Beirut are “living abroad,” aged 18–34, speak Arabic, and primarily use an iOS device. We evaluate the use of such audience estimates to describe the spatial variation in the socioeconomic situation of Syrian refugees across Lebanon. Using data from VASyR as ground truth, we find that iOS device usage explains 90% of the out-of-sample variance in poverty across the Lebanese governorates. However, evaluating predictions at a smaller spatial resolution also indicate limits related to sparsity, as Facebook, for privacy reasons, does not provide audience estimates for fewer than 1,000 users. Furthermore, comparing the population distribution by age and gender of Facebook users with that of the Syrian refugees from VASyR suggests an under-representation of Syrian women on the social media platform. This work adds to growing body of literature demonstrating the value of anonymous and aggregate Facebook advertising data for analysing large-scale humanitarian crises and migration events
Meta-learning for fake news detection surrounding the Syrian war
In this article, we pursue the automatic detection of fake news reporting on the Syrian war using machine learning and meta-learning. The proposed approach is based on a suite of features that include a given article's linguistic style; its level of subjectivity, sensationalism, and sectarianism; the strength of its attribution; and its consistency with other news articles from the same “media camp”. To train our models, we use FA-KES, a fake news dataset about the Syrian war. A suite of basic machine learning models is explored, as well as the model-agnostic meta-learning algorithm (MAML) suitable for few-shot learning, using datasets of a modest size. Feature-importance analysis confirms that the collected features specific to the Syrian war are indeed very important predictors for the output label. The meta-learning model achieves the best performance, improving upon the baseline approaches that are trained exclusively on text features in FA-KES. © 2021 The Author
Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces cerevisiae
Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways
Meta-learning for fake news detection surrounding the Syrian war: An interview with co-author Roaa Al Feel
- …
