194 research outputs found

    Immunohistochemical evaluation of human epidermal growth factor receptor 2 and estrogen and progesterone receptors in breast carcinoma in Jordan

    Get PDF
    INTRODUCTION: Although breast carcinoma (BC) is the most common malignancy affecting Jordanian females and the affected population in Jordan is younger than that in the West, no information is available on its biological characteristics. Our aims in this study are to evaluate the expression of estrogen receptor (ER) and progesterone receptor (PR) and Her-2/neu overexpression in BC in Jordan, and to compare the expression of these with other prognostic parameters for BC such as histological type, histological grade, tumor size, patients' age, and number of lymph node metastases. METHOD: This is a retrospective study conducted in the Department of Pathology at Jordan University of Science and Technology. A confirmed 91 cases of BC diagnosed in the period 1995 to 1998 were reviewed and graded. We used immunohistochemistry to evaluate the expression of ER, PR, and Her-2. Immunohistochemical findings were correlated with age, tumor size, grade and axillary lymph node status. RESULTS: Her-2 was overexpressed in 24% of the cases. The mean age of Her-2 positive cases was 42 years as opposed to 53 years among Her-2 negative cases (p = 0.0001). Her-2 expression was inversely related to ER and PR expression. Her-2 positive tumors tended to be larger than Her-2 negative tumors with 35% overexpression among T3 tumors as opposed to 22% among T2 tumors (p = 0.13). Her-2 positive cases tended to have higher rates of axillary metastases, but this did not reach statistical significance. ER and PR positive cases were seen in older patients with smaller tumor sizes. CONCLUSION: Her-2 overexpression was seen in 24% of BC affecting Jordanian females. Her-2 overexpression was associated with young age at presentation, larger tumor size, and was inversely related to ER and PR expression. One-fifth of the carcinomas were Her-2 positive and ER negative. This group appears to represent an aggressive form of BC presenting at a young age with large primary tumors and a high rate of four or more axillary lymph node metastases

    Entomological aspects and the role of human behaviour in malaria transmission in a highland region of the Republic of Yemen

    Get PDF
    © 2016 Al-Eryani et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. The attached file is the published version of the article

    Loss of UGP2 in brain leads to a severe epileptic encephalopathy, emphasizing that bi-allelic isoform-specific start-loss mutations of essential genes can cause genetic diseases.

    Get PDF
    Developmental and/or epileptic encephalopathies (DEEs) are a group of devastating genetic disorders, resulting in early-onset, therapy-resistant seizures and developmental delay. Here we report on 22 individuals from 15 families presenting with a severe form of intractable epilepsy, severe developmental delay, progressive microcephaly, visual disturbance and similar minor dysmorphisms. Whole exome sequencing identified a recurrent, homozygous variant (chr2:64083454A > G) in the essential UDP-glucose pyrophosphorylase (UGP2) gene in all probands. This rare variant results in a tolerable Met12Val missense change of the longer UGP2 protein isoform but causes a disruption of the start codon of the shorter isoform, which is predominant in brain. We show that the absence of the shorter isoform leads to a reduction of functional UGP2 enzyme in neural stem cells, leading to altered glycogen metabolism, upregulated unfolded protein response and premature neuronal differentiation, as modeled during pluripotent stem cell differentiation in vitro. In contrast, the complete lack of all UGP2 isoforms leads to differentiation defects in multiple lineages in human cells. Reduced expression of Ugp2a/Ugp2b in vivo in zebrafish mimics visual disturbance and mutant animals show a behavioral phenotype. Our study identifies a recurrent start codon mutation in UGP2 as a cause of a novel autosomal recessive DEE syndrome. Importantly, it also shows that isoform-specific start-loss mutations causing expression loss of a tissue-relevant isoform of an essential protein can cause a genetic disease, even when an organism-wide protein absence is incompatible with life. We provide additional examples where a similar disease mechanism applies

    Molecular Basis of Antimicrobial Resistance in Group B Streptococcus Clinical Isolates from Saudi Arabia

    Get PDF
    Maha Alzayer,1 Manal M Alkhulaifi,2 Ahmed Alyami,3 Mohammed S Aldosary,3 Abdulaziz Alageel,3 Ghada Garaween,1 Nada Alsalloum,1 Atef Shibl,1 Arif M Al-Hamad,4 Michel Doumith5 1Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; 2Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; 3Pathology and Clinical Laboratory, Medicine Administration, King Fahad Medical City, Riyadh, Saudi Arabia; 4Division of Clinical Microbiology, Pathology and Laboratory Medicine, Qatif Central Hospital, Qatif, Saudi Arabia; 5Infectious Diseases Research Department, King Abdullah International Medical Research Center, Riyadh, Saudi ArabiaCorrespondence: Maha Alzayer, College of Medicine, Microbiology Department, Al Faisal University, PO Box 50927, Riyadh, 11533, Saudi Arabia, Email [email protected]; [email protected]: Published data on the molecular mechanisms underlying antimicrobial resistance in Group B Streptococcus (GBS) isolates from Saudi Arabia are lacking. Here, we aimed to determine the genetic basis of resistance to relevant antibiotics in a collection of GBS clinical isolates (n = 204) recovered from colonized adults or infected patients and expressing serotypes Ia, Ib, II, III, V, and VI. Initial susceptibility testing revealed resistance to tetracycline (76.47%, n = 156/204), erythromycin (36.76%, n = 75/204), clindamycin (25.49%, n = 52/204), levofloxacin (6.37%, n = 13/204), and gentamicin (2.45%, n = 5/204). Primers designed for the detection of known resistance determinants in GBS identified the presence of erm(A), erm(B), mef(A), and/or lsa(C) genes at the origin of resistance to macrolides and/or clindamycin. Of these, erm(B) and erm(A) were associated with the cMLSB (n = 46) and iMLSB (n = 28) phenotypes, respectively, while mef(A) was linked to the M phenotype (n = 1) and lsa(C) was present in isolates with the L phenotype (n = 8). Resistance to tetracycline was mainly mediated by tet(M) alone (n = 112) or in combination with tet(O) (n = 10); the remaining isolates carried tet(O) (n = 29), tet(L) (n = 2), or both (n = 3). Isolates resistant to gentamicin (n = 5) carried aac(6′)-Ie-aph(2′)-Ia, and those exhibiting resistance to levofloxacin (n = 13) had alterations in GyrA and/or ParC. Most isolates with the erm gene (93.24%, n = 69/74) also had the tet gene and were therefore resistant to erythromycin, clindamycin, and tetracycline. Overall, there were no clear associations between serotypes and resistance genotypes except for the presence of erm(B) in serotype Ib isolates. Dissemination of antibiotic resistance genes across different serotypes represents a public health concern that requires further surveillance and appropriate antibiotic use in clinical practice.Keywords: antibiotic resistance, gene resistance, macrolides, levofloxacin, gentamicin, Group B Streptococcus (GBS

    Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.

    Get PDF
    BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112

    Global, regional, and national prevalence of child and adolescent overweight and obesity, 1990–2021, with forecasts to 2050: a forecasting study for the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Despite the well documented consequences of obesity during childhood and adolescence and future risks of excess body mass on non-communicable diseases in adulthood, coordinated global action on excess body mass in early life is still insufficient. Inconsistent measurement and reporting are a barrier to specific targets, resource allocation, and interventions. In this Article we report current estimates of overweight and obesity across childhood and adolescence, progress over time, and forecasts to inform specific actions. METHODS: Using established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021, we modelled overweight and obesity across childhood and adolescence from 1990 to 2021, and then forecasted to 2050. Primary data for our models included 1321 unique measured and self-reported anthropometric data sources from 180 countries and territories from survey microdata, reports, and published literature. These data were used to estimate age-standardised global, regional, and national overweight prevalence and obesity prevalence (separately) for children and young adolescents (aged 5–14 years, typically in school and cared for by child health services) and older adolescents (aged 15–24 years, increasingly out of school and cared for by adult services) by sex for 204 countries and territories from 1990 to 2021. Prevalence estimates from 1990 to 2021 were generated using spatiotemporal Gaussian process regression models, which leveraged temporal and spatial correlation in epidemiological trends to ensure comparability of results across time and geography. Prevalence forecasts from 2022 to 2050 were generated using a generalised ensemble modelling approach assuming continuation of current trends. For every age-sex-location population across time (1990–2050), we estimated obesity (vs overweight) predominance using the log ratio of obesity percentage to overweight percentage. FINDINGS: Using established methodology from the Global Burden of Diseases, Injuries, and Risk Factors Study 2021, we modelled overweight and obesity across childhood and adolescence from 1990 to 2021, and then forecasted to 2050. Primary data for our models included 1321 unique measured and self-reported anthropometric data sources from 180 countries and territories from survey microdata, reports, and published literature. These data were used to estimate age-standardised global, regional, and national overweight prevalence and obesity prevalence (separately) for children and young adolescents (aged 5–14 years, typically in school and cared for by child health services) and older adolescents (aged 15–24 years, increasingly out of school and cared for by adult services) by sex for 204 countries and territories from 1990 to 2021. Prevalence estimates from 1990 to 2021 were generated using spatiotemporal Gaussian process regression models, which leveraged temporal and spatial correlation in epidemiological trends to ensure comparability of results across time and geography. Prevalence forecasts from 2022 to 2050 were generated using a generalised ensemble modelling approach assuming continuation of current trends. For every age-sex-location population across time (1990–2050), we estimated obesity (vs overweight) predominance using the log ratio of obesity percentage to overweight percentage. INTERPRETATION: Both overweight and obesity increased substantially in every world region between 1990 and 2021, suggesting that current approaches to curbing increases in overweight and obesity have failed a generation of children and adolescents. Beyond 2021, overweight during childhood and adolescence is forecast to stabilise due to further increases in the population who have obesity. Increases in obesity are expected to continue for all populations in all world regions. Because substantial change is forecasted to occur between 2022 and 2030, immediate actions are needed to address this public health crisis

    A Randomized Open-Label Trial of Artesunate- Sulfadoxine-Pyrimethamine with or without Primaquine for Elimination of Sub-Microscopic P. falciparum Parasitaemia and Gametocyte Carriage in Eastern Sudan

    Get PDF
    In areas of seasonal malaria transmission, treatment of asymptomatic carriers of malaria parasites, whose parasitaemia persists at low densities throughout the dry season, could be a useful strategy for malaria control. We carried out a randomized trial to compare two drug regimens for clearance of parasitaemia in order to identify the optimum regimen for use in mass drug administration in the dry season.A two-arm open-label randomized controlled trial was conducted during the dry season in an area of distinct seasonal malaria in two villages in Gedarif State in eastern Sudan. Participants were asymptomatic adults and children aged over 6 months, with low-density P. falciparum infection detected by PCR. Participants were randomized to receive artesunate/sulfadoxine-pyrimethamine (AS+SP) combination for three days with or without a dose of primaquine (PQ) on the fourth day. Parasitaemia detected by PCR on days 3, 7 and 14 after the start of treatment and gametocytes detected by RT-PCR on days 7 and 14 were then recorded. 104 individuals who had low density parasitaemia at screening were randomized and treated during the dry season. On day 7, 8.3% were positive by PCR in the AS+SP+PQ group and 6.5% in the AS+SP group (risk difference 1.8%, 95%CI -10.3% to +13.8%). At enrolment, 12% (12/100) were carrying gametocytes. This was reduced to 6.4% and 4.4% by day 14 (Risk difference 1.9% (95%CI -9.3% to +13.2%) in AS+SP+PQ and AS+SP groups, respectively.Addition of primaquine to artemisinin combination treatment did not improve elimination of parasitaemia and prevention of gametocyte carriage in carriers with low-density parasitaemia in the dry season.ClinicalTrials.gov NCT00330902

    SHIP-Deficient Dendritic Cells, Unlike Wild Type Dendritic Cells, Suppress T Cell Proliferation via a Nitric Oxide-Independent Mechanism

    Get PDF
    Dendritic cells (DCs) not only play a crucial role in activating immune cells but also suppressing them. We recently investigated SHIP's role in murine DCs in terms of immune cell activation and found that TLR agonist-stimulated SHIP-/- GM-CSF-derived DCs (GM-DCs) were far less capable than wild type (WT, SHIP+/+) GM-DCs at activating T cell proliferation. This was most likely because SHIP-/- GM-DCs could not up-regulate MHCII and/or co-stimulatory receptors following TLR stimulation. However, the role of SHIP in DC-induced T cell suppression was not investigated.In this study we examined SHIP's role in DC-induced T cell suppression by co-culturing WT and SHIP-/- murine DCs, derived under different conditions or isolated from spleens, with αCD3+ αCD28 activated WT T cells and determined the relative suppressive abilities of the different DC subsets. We found that, in contrast to SHIP+/+ and -/- splenic or Flt3L-derived DCs, which do not suppress T cell proliferation in vitro, both SHIP+/+ and -/- GM-DCs were capable of potently suppressing T cell proliferation. However, WT GM-DC suppression appeared to be mediated, at least in part, by nitric oxide (NO) production while SHIP-/- GM-DCs expressed high levels of arginase 1 and did not produce NO. Following exhaustive studies to ascertain the mechanism of SHIP-/- DC-mediated suppression, we could conclude that cell-cell contact was required and the mechanism may be related to their relative immaturity, compared to SHIP+/+ GM-DCs.These findings suggest that although both SHIP+/+ and -/- GM-DCs suppress T cell proliferation, the mechanism(s) employed are different. WT GM-DCs suppress, at least in part, via IFNγ-induced NO production while SHIP-/- GM-DCs do not produce NO and suppression can only be alleviated when contact is prevented

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Regular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations. Methods: The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds. Findings: The leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles. Interpretation: Long-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere. Funding: Bill & Melinda Gates Foundation
    corecore