4 research outputs found

    Multiple-valued Galois field S/D trees for GFSOP minimization and their complexity

    No full text

    Regular realization of symmetric functions using reversible logic

    No full text
    Reversible logic is of increasing importance to many future computer technologies. We introduce a regular structure to realize symmetric functions in binary reversible logic. This structure, called a 2*2 net structure, allows for a more efficient realization of symmetric functions than the methods introduced by the other authors. Our synthesis method allows us to realize arbitrary symmetric function in a completely regular structure of reversible gates with relatively little "garbage". Because every Boolean function can be made symmetric by repeating input variables, our method is applicable to arbitrary multi-input multi-output Boolean functions and realizes such arbitrary function in a circuit with a relatively small number of additional gate outputs. The method can also be used in classical logic. Its advantages in terms of numbers of gates and inputs/outputs are especially seen for symmetric or incompletely specified functions with many outputs
    corecore