280 research outputs found

    Seasonal modulation of mesoscale processes alters nutrient availability and plankton communities in the Red Sea

    Get PDF
    Hydrographic and atmospheric forcing set fundamental constraints on the biogeochemistry of aquatic ecosystems and manifest in the patterns of nutrient availability and recycling, species composition of communities, trophic dynamics, and ecosystem metabolism. In the Red Sea, latitudinal gradients in environmental conditions and primary production have been ascribed to fluctuations in Gulf of Aden Water inflow, upwelling/mixing, and regenerated nutrient utilization i.e. rapidly recycled nitrogen in upper layers. However, our understanding of upper layer dynamics and related changes in plankton communities, metabolism and carbon and nitrogen export is limited. We surmised that stratification and mesoscale eddies modulate the nutrient availability and taxonomic identity of plankton communities in the Red Sea. Based on remote-sensing data of sea level anomalies and high resolution in situ measurements (ScanFish) we selected stations for hydrographic CTD profiles, water sampling (nutrients, seawater oxygen stable isotopes [δ18OSW]), phytoplankton and zooplankton collections. In fall 2014, strong stratification subjected the plankton community to an overall nitrogen and phosphorus shortage. The nutrient deficiency increased numbers of heterotrophic dinoflagellates, microzooplankton, and diazotrophs (Trichodesmium, diatom-diazotroph associations [DDAs]), albeit largely decreased phytoplankton and mesozooplankton abundances. In spring 2015, mesoscale eddies increased the nutrient availability, and the thermohaline characteristics and low δ18OSW point to the interaction of eddies with Gulf of Aden Surface Water (GASW). Cyclonic eddies and, most likely, the availability of nutrients associated with the GASW, increased the abundances of autotrophs (diatoms, Prasinophytes) and supported larger numbers of zooplankton and their larvae. We demonstrate that the interplay of stratification, advection of Gulf of Aden water and mesoscale eddies are key elements to better understand changes in plankton community composition, ecosystem metabolism, and macronutrient export in the Red Sea in space and time

    Spatio-temporal variation of microphytoplankton communities in Obhur Creek, the central Red Sea

    Get PDF
    The abundance and distribution of microphyto-plankton and related physicochemical factors were assessed monthly in Obhur Creek, the central Red Sea. Sampling was carried out near the entrance, the middle and end parts of the creek. During the course of the present study, the Red Sea was characterized by predominantly oligotrophic conditions. Nutrient concentrations were relatively higher in the end part of the creek compared to the two other study sites. Chlorophyll a was also low throughout the year (average: 0.35 ± 0.32 mg m−3), except in May when it showed clear peaks at open-water and middle sites of the creek (1.85 and 1.04 mg m−3, respectively). Phytoplankton abundance followed a similar pattern to that of chlorophyll a with considerably higher abundance at these sites in May (3063.27 × 103 and 1082.34 × 103 individuals m−3, respectively). This unusually higher abundance was mostly due to the proliferation of the diatom Pseudo-nitzschia cf. delicatissima (Cleve) Heiden. Silicate concentrations were statistically significantly correlated with total phytoplankton. A total of 220 phytoplankton species were recorded during the study period (117 diatoms, 99 dinoflagellates and four cyanophytes). Diatoms dominated in the phytoplankton abundance (75%) and were followed by dinoflagellates (20%), while cyanophytes accounted for a minimal proportion. Of all phytoplankton species observed during the study, 21 diatom and four dinoflagellate species were considered as new records for the Red Sea, and two diatom and 14 dinoflagellate species were listed as harmful algal species worldwide

    Distribution and community structure of microphytoplankton in relation to increasing anthropogenic impact along coastal waters of Jeddah, the central Red Sea

    Get PDF
    Seasonal distribution and diversity of surface phytoplankton have been studied in relation to anthropogenic activities at seven locations along the coastal waters of Jeddah, Saudi Arabia in 2017. The concentration of nitrite, nitrate, ammonia, phosphate and silicate varied over wide ranges: 0.04–20.27, 0.05–29.3, 0.22–78.16, 0.02–25.90 and 43–24.50 µmol l−1, respectively. Inorganic nutrients, phytoplankton biomass and density were at eutrophic levels at two lagoon locations (4 and 5), while other coastal locations showed oligotrophic characteristics of the Red Sea. Phytoplankton biomass was positively correlated with all measured inorganic nutrients. The total phytoplankton density varied between 52.4  ×  103 and 40800  ×  103 cells m−3 (average 6249.9 × 103 ± 10 797 × 103 cells m−3). A total of 174 species of phytoplankton (95 diatoms, 75 dinoflagellates, 3 cyanophytes and 1 silicoflagellates) were recorded in this study, with the dominance of diatoms (95.1%). Higher densities observed at lagoon locations were mainly due to the proliferation of the diatom species Skeletonema costatum and Chaetoceros decipiens. In terms of diversity, dinoflagellates were more numerous than diatoms in July, otherwise mostly diatoms dominated. On the other hand, cyanophytes were more abundant in November. Based on the present study, anthropogenic activities (especially sewage effluent) in Jeddah coastal waters had a significant impact on the phytoplankton densities and diversity.Seasonal distribution and diversity of surface phytoplankton have been studied in relation to anthropogenic activities at seven locations along the coastal waters of Jeddah, Saudi Arabia in 2017. The concentration of nitrite, nitrate, ammonia, phosphate and silicate varied over wide ranges: 0.04–20.27, 0.05–29.3, 0.22–78.16, 0.02–25.90 and 43–24.50 µmol l−1, respectively. Inorganic nutrients, phytoplankton biomass and density were at eutrophic levels at two lagoon locations (4 and 5), while other coastal locations showed oligotrophic characteristics of the Red Sea. Phytoplankton biomass was positively correlated with all measured inorganic nutrients. The total phytoplankton density varied between 52.4  ×  103 and 40800  ×  103 cells m−3 (average 6249.9 × 103 ± 10 797 × 103 cells m−3). A total of 174 species of phytoplankton (95 diatoms, 75 dinoflagellates, 3 cyanophytes and 1 silicoflagellates) were recorded in this study, with the dominance of diatoms (95.1%). Higher densities observed at lagoon locations were mainly due to the proliferation of the diatom species Skeletonema costatum and Chaetoceros decipiens. In terms of diversity, dinoflagellates were more numerous than diatoms in July, otherwise mostly diatoms dominated. On the other hand, cyanophytes were more abundant in November. Based on the present study, anthropogenic activities (especially sewage effluent) in Jeddah coastal waters had a significant impact on the phytoplankton densities and diversity

    Benefit from integrating zinc oxide nanoparticles with probiotic bacteria to produce strong Biofertilizer for increasing the production of agricultural crops, vegetables and fruits

    Get PDF
    In this research, new methods were found to produce a strong, In this study, zinc oxide useful and usable biofertilizer in any agricultural soil and with any agricultural crop, whether fruit or vegetables, which is Nanoparticles is combined and it is incubated and prepared with some important nutrients for the growth and reproduction of the probiotic bacteria microorganisms present together to produce a biofertilizer and organic fertilizer rich in important nutrients for plant growth and increased production of agricultural crops, A mixed and combined nutritional medium of many materials and vegetables and fruits. nutrients suitable for the purpose of growing many living microorganisms such as bacteria and fungi and controlling the growth rates of microorganisms with the percentage of food present in the biofertilizer (F/M Ratio ).It was reached to increase the efficiency of agricultural fertilizer production, the work of biological fertilizers, and the production of a new strong and effective biological product in increasing the production of agricultural crops and supplying the plant with what it needs from important nutrients to increase growth, early production and improve the quality of agricultural soil. The main goal of adding many food media is the multiplicity and diversity of the carbon source, the multiplication of the growth of microbial isolates, the increase in their numbers, the reduction of growth, reproduction and regeneration quickly, and to reach an increase in the efficiency and effectiveness of biological fertilizer for soil and plants together, as it is considered an integrated nutrient medium. Biofertilizers, a sustainable ecofriendly agricultural approach to crop improvement is used to supplement chemical fertilizers mainly to maintain soil fertility. Continuous application of expensive chemical fertilizers causes reduction of organic matter content in soil and also microbial activity drastically. Biofertilizers are organic, biodegradable. They contain micro-organisms, provide nutrients viz., N, P, K and other nutrients, antibiotics, hormones like auxins, cytokinin, vitamins which enrich root rhizosphere. The present article highlights biofertilizer mediated crop functional such as plant growth and productivity, nutrient profile, plant protection and there by crop improvement. The knowledge gained from the literature appraised here in will help us to understand the physiological bases of biofertilizers towards sustainable agriculture in reducing problems associated with the use of chemicals fertilizers. Therefore, there is an urgent need to adapt biological sciences applications in agriculture field. Biotechnology is an amalgamation of variety of disciplines- molecular biology, bioinformatics, biochemistry, genetics and microbiology. The usage of combinations of these disciplines in agricultural field leads to generation of biotech crops with increased yield and enhanced quality. Agriculture biotechnology not only upgrades the quality but also utilizes the resources and livestock for the well-being of animals and wild plants. Phosphorus, Probiotic bacteria with yoghurt and sugar Charcoal sodium chloride and some other nutrients such as flour and starch are mixed with zinc oxide nano particles to produce a bio-fertilizer fully of nutrients necessary for plant growth, increase the production of agricultural crops, which improve the quality characteristics of agricultural soil, treat stress and poor production and some agricultural pests that may negatively affect plant growth and work to reduce the rate of increase of agricultural crops, vegetables and fruits , and so it is necessary to find alternative strategy to increase availability of nutrients for plants. One possible way could be application of so called bioeffectors (BE) which should improve the mobilization of nutrients (especially phosphorus) from less available forms in soil, improve plant growth and contribute to mycorrhiza development. BEs are commercially supplied products which contain active substances (live microorganisms and active natural compounds). BEs can be used in organic agriculture, because their application represents no risk for the environment

    Functionalized poly(N-isopropylacrylamide)-based microgels in tumor targeting and drug delivery

    Get PDF
    Over the past several decades, the development of engineered small particles as targeted and drug delivery systems (TDDS) has received great attention thanks to the possibility to overcome the limitations of classical cancer chemotherapy, including targeting incapability, nonspecific action and, consequently, systemic toxicity. Thus, this research aims at using a novel design of Poly(N-isopropylacrylamide) p(NIPAM)-based microgels to specifically target cancer cells and avoid the healthy ones, which is expected to decrease or eliminate the side effects of chemotherapeutic drugs. Smart NIPAM-based microgels were functionalized with acrylic acid and coupled to folic acid (FA), targeting the folate receptors overexpressed by cancer cells and to the chemotherapeutic drug doxorubicin (Dox). The successful conjugation of FA and Dox was demonstrated by dynamic light scattering (DLS), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), UV-VIS analysis, and differential scanning calorimetry (DSC). Furthermore, viability assay performed on cancer and healthy breast cells, suggested the microgels’ biocompatibility and the cytotoxic effect of the conjugated drug. On the other hand, the specific tumor targeting of synthetized microgels was demonstrated by a co-cultured (healthy and cancer cells) assay monitored using confocal microscopy and flow cytometry. Results suggest successful targeting of cancer cells and drug release. These data support the use of pNIPAM-based microgels as good candidates as TDDS

    A lipidomic screen of hyperglycemia-treated HRECs links 12/15-Lipoxygenase to microvascular dysfunction during diabetic retinopathy via NADPH oxidase

    Get PDF
    Retinal hyperpermeability and subsequent macular edema is a cardinal feature of early diabetic retinopathy (DR). Here, we investigated the role of bioactive lipid metabolites, in particular 12/15-lipoxygenase (LOX)-derived metabolites, in this process. LC/MS lipidomic screen of human retinal endothelial cells (HRECs) demonstrated that 15-HETE was the only significantly increased metabolite (2.4 ± 0.4-fold, P = 0.0004) by high glucose (30 mM) treatment. In the presence of arachidonic acid, additional eicosanoids generated by 12/15-LOX, including 12- and 11-HETEs, were significantly increased. Fluorescein angiography and retinal albumin leakage showed a significant decrease in retinal hyperpermeability in streptozotocin-induced diabetic mice lacking 12/15-LOX compared with diabetic WT mice. Our previous studies demonstrated the potential role of NADPH oxidase in mediating the permeability effect of 12- and 15-HETEs, therefore we tested the impact of intraocular injection of 12-HETE in mice lacking the catalytic subunit of NADPH oxidase (NOX2). The permeability effect of 12-HETE was significantly reduced in NOX2−/− mice compared with the WT mice. In vitro experiments also showed that 15-HETE induced HREC migration and tube formation in a NOX-dependent manner. Taken together our data suggest that 12/15-LOX is implicated in DR via a NOX-dependent mechanism.National Institutes of Health Grant 5R01EY023315 and National Priorities Research Program Grant 4-1046-3-284 from the Qatar National Research Fund (a member of Qatar Foundation). This study was also supported in part by the National Center for Research Resources, National Institutes of Health Grant S10RR027926

    Mapping the key players in Kawasaki disease; role of inflammatory genes and protein-protein interactions

    Get PDF
    Background: Kawasaki disease (KD) is a complex acquired condition characterized by systemic blood vessel inflammation that primarily affects children under five years of age. It is clinically diagnosed as a syndrome, making it susceptible to misdiagnoses. Severe complications such as myocardial damage and coronary artery abnormalities can be fatal; thus, early diagnosis is critical for preventing disease progression. Currently, no specific diagnostic test can distinguish KD from viral or bacterial infections. Additionally, the molecular mechanisms underlying the disease remain unclear, hindering the development of targeted therapies. Objective: This study aimed to identify the genetic patterns and molecular mechanisms associated with KD using a comprehensive gene expression analysis. Methods: RNA sequencing and microarray genomic datasets were retrieved from the NCBI Gene Expression Omnibus (GEO). Four datasets (GSE68004, GSE63881, GSE73461, and GSE73463) were used for the final analysis. These datasets compared patients with KD to healthy controls, and patients with acute KD to convalescent patients. Differentially expressed genes (DEGs) were identified in the datasets. Enrichment analysis was conducted, followed by protein-protein interaction (PPI) network analysis to identify hub genes. Heatmaps were generated to visualize gene expression patterns. Results: Eighteen hub genes were identified in the KD versus control comparison, whereas 20 hub genes were identified in the acute versus convalescent analysis. These genes play key roles in inflammation, cytokine storm, innate immune modulation, and endothelial damage. Conclusion: This study provides valuable insights into the molecular mechanisms underlying KD, and identifies potential diagnostic biomarkers and therapeutic targets

    Fabrication of bioactive nanocomposites from chitosan, cress mucilage, and selenium nanoparticles with powerful antibacterial and anticancerous actions

    Get PDF
    Natural bioactive alternatives are the utmost requests from researchers to provide biosafe and effectual health-guarding agents. The biopolymers chitosan nanoparticles (NCT), mucilage of cress seed (GCm; Lepidium sativum), and GCm-mediated selenium nanoparticles (GCm/SeNPs) were innovatively employed for fabricating novel bioactive natural nanocomposites (NCs) with elevated bioactivities as bactericidal (against Salmonella typhimurium and Staphylococcus aureus) and anticancer (against CaCo-2 and HeLa cells). The SeNPs were successfully generated with GCm, and different NCs formulations were fabricated from NCT:GCm/SeNPs amalgam ratios including T1, T2, and T3 with 2:1, 1:1, and 1:2 ratios, respectively. The infrared analysis of synthesized molecules appointed apparent physical interactions among interacted molecules. The average particles’ sizes and charges of molecules/NCs were (12.7, 316.4, 252.8, and 127.3 nm) and (−6.9, +38.7, +26.2, and −25.8 mV) for SeNPs, T1, T2, and T3, respectively. The biocidal assessment of NCs indicated that T1 was the strongest antibacterial formulation, whereas T3 was the superior anticancer amalgam. These NCs formulations could exceed the biocidal potentialities of standard biocides. T1-NC could cause severe destructions/deformations in challenged S. typhimurium within 9 h, whereas T3-NCs induced apparent fluorescent apoptosis signs in treated HeLa cells. The prospective applications innovatively designed biocidal natural NCs that are recommended for controlling pathogenic bacteria and fighting cancerous cells
    corecore