75 research outputs found

    Heavy quark spin symmetry and SU(3)-flavour partners of the X (3872)

    Get PDF
    In this work, an Effective Field Theory (EFT) incorporating light SU(3)-flavour and heavy quark spin symmetries is used to describe charmed meson-antimeson bound states. At Lowest Order (LO), this means that only contact range interactions among the heavy meson and antimeson fields are involved. Besides, the isospin violating decays of the X(3872) will be used to constrain the interaction between the D and a (D) over bar* mesons in the isovector channel. Finally, assuming that the X(3915) and Y(4140) resonances are D* (D) over bar* and D-s* (D) over bar (s)* molecular states, we can determine the four Low Energy Constants (LECs) of the EFT that appear at LO and, therefore, the full spectrum of molecular states with isospin I = 0, 1/2 and 1

    X(3872): Hadronic Molecules in Effective Field Theory

    Full text link
    We consider the implications from the possibility that the recently observed state X(3872) is a meson-antimeson molecule. We write an effective Lagrangian consistent with the heavy-quark and chiral symmetries needed to describe X(3872). We claim that if X(3872) is a molecular bound state of D^*0 and anti-D^0 mesons, the heavy-quark symmetry requires the existence of the molecular bound state X_b of B^*0 and anti-B^0 with the mass of 10604 MeV.Comment: 12 pages, 1 figure, 1 table, RevTe

    Heavy Quarkonium Physics from Effective Field Theories

    Get PDF
    I review recent progress in heavy quarkonium physics from an effective field theory perspective. In this unifying framework, I discuss advances in perturbative calculations for low-lying quarkonium observables and in lattice calculations for high-lying ones, and progress and lasting puzzles in quarkonium production.Comment: Plenary talk at the 4th International Conference on Quarks and Nuclear Physics (QNP06), 5-10 June 2006, Madrid, Spain; 6 pages, 1 figure, EPJ styl

    Country\u27s Unwanted Children

    Full text link
    The 9/11 attacks in 2001 thrust American Muslims into the spotlight, where they were bombarded with suspicion. Their lives, habits, and religion were intensely scrutinized by the government and their fellow Americans. Yet, they were also portrayed in the media in a simplistic and stereotyped manner. Millennial Muslim Americans – who came of age after the 9/11 attacks and the subsequent rise of Islamophobia in the U.S – have known no other America. Website: https://www.amralfiky.com/countrysunwantedchildre

    Hidden charm and bottom molecular states

    Get PDF
    We investigate heavy quark symmetries for heavy light meson-antimeson systems in a contact-range effective field theory. In the SU(3) light flavor limit, the leading order Lagrangian respecting heavy quark spin symmetry contains four independent counter-terms. Neglecting 1/mQ corrections, three of these low energy constants can be determ1ined by theorizing a molecular description of the X(3872) and Zb(10610) states. Thus, we can predict new hadronic molecules, in particular the isovector charmonium partners of the Zb(10610) and the Zb(10650) states. We also discuss hadron molecules composed of a heavy meson and a doubly-heavy baryon, which would be related to the heavy meson-antimeson molecules thanks to the heavy antiquark-diquark symmetry. Finally, we also study the X(3872)→D0D¯0π0 decay, which is not only sensitive to the short distance part of the X(3872) molecular wave function, as the J/ψππ and J/ψ3π X(3872) decay modes are, but it is also affected by the long-distance structure of the resonance. Furthermore, this decay might provide some information on the interaction between the DD¯ charm mesons

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair

    Detecting the long-distance structure of the X(3872)

    Get PDF
    We study the decay within a molecular picture for the state. This decay mode is more sensitive to the long-distance structure of the resonance than its and decays, which are mainly controlled by the details of the wave function at short distances. We show that the final state interaction can be important, and that a precise measurement of this partial decay width can provide valuable information on the interaction strength between the charm mesons

    Decay widths of the spin-2 partners of the X(3872)

    Get PDF
    We consider the X(3872) resonance as a JPC=1++ DD¯∗ hadronic molecule. According to heavy quark spin symmetry, there will exist a partner with quantum numbers 2++, X2, which would be a D∗D¯∗ loosely bound state. The X2 is expected to decay dominantly into DD¯, DD¯∗ and D¯D∗ in d-wave. In this work, we calculate the decay widths of the X2 resonance into the above channels, as well as those of its bottom partner, Xb2, the mass of which comes from assuming heavy flavor symmetry for the contact terms. We find partial widths of the X2 and Xb2 of the order of a few MeV. Finally, we also study the radiative X2→DD¯∗γ and Xb2→B¯B∗γ decays. These decay modes are more sensitive to the long-distance structure of the resonances and to the DD¯∗ or BB¯∗ final state interaction
    corecore