121 research outputs found

    FOR 330.01: Forest Ecology

    Get PDF

    FOR 271.01: Wilderness Ecology

    Get PDF

    A True Partnership

    Get PDF

    RSCN 273.01: Wilderness and Civilization - Field Studies

    Get PDF

    FOR 501.01: Research Methods

    Get PDF

    FOR 273.01: Wilderness and Civilization Field Studies II

    Get PDF

    Edge type defines alien plant species invasions along Pinus contorta burned, highway and clearcut forest edges

    Get PDF
    Forest edges have been long recognized as the first landscape elements to be invaded by alien plant species in forest ecosystems. However, little is known about the role of forest edge type in invasive species patterns. In the Northern Rocky Mountains of the United States, disturbance-caused forest edges are a common feature in the landscape with anthropogenic (e.g. roadside, clearcut) and natural (e.g. burned, windthrown) edge types. In this paper we examine patterns of alien species invasion and native community structure across three forest edge types in Pinus contorta forests including contrasts between undeveloped landscapes in Yellowstone National Park (YNP), and developed (roaded and logged) portions of the adjacent Gallatin National Forest (GNF). Six sets of transects were located in each of five study sites, including clearcut, bum and highway edge types. When bum and highways edges were compared between GNF and YNP, landscape matrix did not have a significant effect on either alien species richness or cover. In both landscapes, highway edges had higher alien species richness and cover than burn edges. For burn and highway edges, alien species richness and cover were significantly related to edge type, distance from edge and the interaction between both variables. In Gallatin NF, alien species were concentrated along highway edges, while burn and clearcut edges are significantly less invaded. Overall, alien species richness was negatively correlated with native species richness in plots with at least one alien species (R-2 = 0.30, p < 0.001). We were able to explain from 23 to 68% of the variation in alien species richness from simple measures of vegetation structure within each of the edge types. Our study suggests that at least for high elevation conifer ecosystems such as West Yellowstone, alien plant invasion into interior forest is significantly enhanced by disturbance edges only along roadsides. Further studies are needed to determine causal mechanisms that explain the high degree of invisibility of roadside edges. Our results highlight the need for careful planning and management of roads, as they may become a primary conduit of alien plant invasions

    Plant invasions in protected areas at multiple scales: \u3ci\u3eLinaria vulgaris\u3c/i\u3e (Scrophulariaceae) in the West Yellowstone area

    Get PDF
    Invasive alien plants have long been recognized as a threat to low-elevation, disturbed environments, but the case of Linaria vulgaris Mill. in Yellowstone National Park and Gallatin National Forest shows that invasions can also spread to high-elevation natural reserves. Because invasions in protected areas are a product of complex processes occurring over a broad range of scales, we argue that a multi-scale research approach is needed to capture both patterns and potential mechanisms of the invasion process. Mapping L. vulgaris at the landscape scale, we found the species occupying a broad range of sites, apparently originating from just 2 historical sources, colonizing both human-caused and natural disturbances. Analyzed at the stand scale, patches tend to aggregate in newly invaded areas and disperse in heavily infested areas. The data suggest that patches grow in size by clonal growth and in number by creation of new satellite patches. Radial patch growth rates are related to site characteristics. Clonal patch scale analysis shows that ramet densities and Linaria\u27s effects on native plants are highest in patch centers. Both mean ramet height and reproductive vs. vegetative ramet height ratio are higher in patch cores. These results suggest that L. vulgaris may displace natural vegetation by maintaining vigor even in large and old clonal patches. Our results confirm that L. vulgaris is a significant threat to native biodiversity in open, human- or naturally disturbed environments in protected areas of the Rocky Mountains. A multi-scale method can allow managers to better understand patterns of invasion and prioritize management activities to control invasive alien plants, especially in heterogeneous protected area landscapes
    corecore