90 research outputs found

    Cyclical and dose-dependent responses of adult human mature oligodendrocytes to fingolimod

    Get PDF
    Fingolimod is a sphingosine-1-phosphate (S1P) analogue that has been used in clinical trials as a systemic immunomodulatory therapy for multiple sclerosis. Fingolimod readily accesses the central nervous system, raising the issue of its direct effects on neural cells. We assessed the effects of active fingolimod on dissociated cultures of mature, myelin-producing oligodendrocytes (OLGs) derived from adult human brain. Human OLGs express S1P receptor transcripts in relative abundance of S1P5>S1P3>S1P1, with undetectable levels of S1P4. Low doses of fingolimod (100 pmol/L to 1 nmol/L) induced initial membrane elaboration (2 days), subsequent retraction (4 days), and recurrence of extension with prolonged treatment (8 days). Higher doses (10 nmol/L to 1 μmol/L) caused the opposite modulation of membrane dynamics. Retraction was rescued by co-treatment with the S1P3/S1P5 pathway antagonist, suramin, and was associated with RhoA-mediated cytoskeletal signaling. Membrane elaboration was mimicked using the S1P1 agonist SEW2871. Fingolimod rescued human OLGs from serum and glucose deprivation-induced apoptosis, which was reversed with suramin co-treatment and mimicked using an S1P5 agonist. High doses of fingolimod induced an initial down-regulation of S1P5 mRNA levels relative to control (4 hours), subsequent up-regulation (2 days), and recurrent down-regulation (8 days). S1P1 mRNA levels were inversely regulated compared with S1P5. These results indicate that fingolimod modulates maturity- and species-specific OLG membrane dynamics and survival responses that are directly relevant for myelin integrity

    Adenosine versus intravenous calcium channel antagonists for supraventricular tachycardia

    Get PDF
    BACKGROUND: People with supraventricular tachycardia (SVT) frequently are symptomatic and present to the emergency department for treatment. Although vagal manoeuvres may terminate SVT, they often fail, and subsequently adenosine or calcium channel antagonists (CCAs) are administered. Both are known to be effective, but both have a significant side effect profile. This is an update of a Cochrane review previously published in 2006. OBJECTIVES: To review all randomised controlled trials (RCTs) that compare effects of adenosine versus CCAs in terminating SVT. SEARCH METHODS: We identified studies by searching CENTRAL, MEDLINE, Embase, and two trial registers in July 2017. We checked bibliographies of identified studies and applied no language restrictions. SELECTION CRITERIA: We planned to include all RCTs that compare adenosine versus a CCA for patients of any age presenting with SVT. DATA COLLECTION AND ANALYSIS: We used standard methodological procedures as expected by Cochrane. Two review authors independently checked results of searches to identify relevant studies and resolved differences by discussion with a third review author. At least two review authors independently assessed each included study and extracted study data. We entered extracted data into Review Manager 5. Primary outcomes were rate of reversion to sinus rhythm and major adverse effects of adenosine and CCAs. Secondary outcomes were rate of recurrence, time to reversion, and minor adverse outcomes. We measured outcomes by calculating odds ratios (ORs) and assessed the quality of primary outcomes using the GRADE approach through the GRADEproGDT website. MAIN RESULTS: We identified two new studies for inclusion in the review update; the review now includes seven trials with 622 participants who presented to an emergency department with SVT. All included studies were RCTs, but only three described the randomisation process, and none had blinded participants, personnel, or outcome assessors to the intervention given. Moderate-quality evidence shows no differences in the number of people reverting to sinus rhythm who were treated with adenosine or CCA (89.7% vs 92.9%; OR 1.51, 95% confidence interval (CI) 0.85 to 2.68; participants = 622; studies = 7; I(2) = 36%). Low-quality evidence suggests no appreciable differences in major adverse event rates between CCAs and adenosine. Researchers reported only one case of hypotension in the CCA group and none in the adenosine group (0.66% vs 0%; OR 3.09, 95% CI 0.12 to 76.71; participants = 306; studies = 3; I(2) = 0%). Included trials did not report length of stay in hospital nor patient satisfaction. AUTHORS' CONCLUSIONS: Moderate-quality evidence shows no differences in effects of adenosine and calcium channel antagonists for treatment of SVT on reverting to sinus rhythm, and low-quality evidence suggests no appreciable differences in the incidence of hypotension. A study comparing patient experiences and prospectively studied adverse events would provide evidence on which treatment is preferable for management of SVT

    NiO-Nanofillers Embedded in Graphite/PVA-Polymer Matrix for efficient Electromagnetic Radiation Shielding

    Full text link
    In this study, we report on the preparation of NiO/graphite sheets nanofillers in PVA-polymer matrix using a simple cost-effective hydrothermal process for EM shielding effectiveness applications. The careful optimization of the growth conditions and NiO/G/PVA relative ratios have resulted in NiO nanoparticles formation with homogeneous density. In this nanocomposite, the NiO nanoparticles and graphite sheets were incorporated into a polymer to enhance the electromagnetic shielding effectiveness. The morphological, structural, and chemical analysis have been conducted by SEM, EDX and XRD techniques. EDX and XRD analysis confirmed the exact chemical composition with high purity. SEM images showed the best morphology with homogenous NiO-nanoparticles distribution on graphite sheets for 15 wt% NiO relative ratio NiO/G/PVA nanocomposite. The nanocomposite was tested in different environments and shielding chambers that contained relatively high-level exposure to electromagnetic radiation. The shielding effectiveness (SE) measurements of NiO/G/PVA showed a significant increase of shielding effectiveness of about 17 dB compared to the commercial shielding paint. This can be ascribed to the homogenous distribution of NiO-NPs over the entire graphite sheets and the strong interaction of the incident electromagnetic radiation with the magnetic and electric dipoles in the nanocomposite. These finding is promising for enhanced flexible and cost-effective EMI shielding applications

    Global, regional, and national burden of neurological disorders during 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Comparable data on the global and country-specific burden of neurological disorders and their trends are crucial for health-care planning and resource allocation. The Global Burden of Diseases, Injuries, and Risk Factors (GBD) Study provides such information but does not routinely aggregate results that are of interest to clinicians specialising in neurological conditions. In this systematic analysis, we quantified the global disease burden due to neurological disorders in 2015 and its relationship with country development level. Methods We estimated global and country-specific prevalence, mortality, disability-adjusted life-years (DALYs), years of life lost (YLLs), and years lived with disability (YLDs) for various neurological disorders that in the GBD classification have been previously spread across multiple disease groupings. The more inclusive grouping of neurological disorders included stroke, meningitis, encephalitis, tetanus, Alzheimer's disease and other dementias, Parkinson's disease, epilepsy, multiple sclerosis, motor neuron disease, migraine, tension-type headache, medication overuse headache, brain and nervous system cancers, and a residual category of other neurological disorders. We also analysed results based on the Socio-demographic Index (SDI), a compound measure of income per capita, education, and fertility, to identify patterns associated with development and how countries fare against expected outcomes relative to their level of development. Findings Neurological disorders ranked as the leading cause group of DALYs in 2015 (250·7 [95% uncertainty interval (UI) 229·1 to 274·7] million, comprising 10·2% of global DALYs) and the second-leading cause group of deaths (9·4 [9·1 to 9·7] million], comprising 16·8% of global deaths). The most prevalent neurological disorders were tension-type headache (1505·9 [UI 1337·3 to 1681·6 million cases]), migraine (958·8 [872·1 to 1055·6] million), medication overuse headache (58·5 [50·8 to 67·4 million]), and Alzheimer's disease and other dementias (46·0 [40·2 to 52·7 million]). Between 1990 and 2015, the number of deaths from neurological disorders increased by 36·7%, and the number of DALYs by 7·4%. These increases occurred despite decreases in age-standardised rates of death and DALYs of 26·1% and 29·7%, respectively; stroke and communicable neurological disorders were responsible for most of these decreases. Communicable neurological disorders were the largest cause of DALYs in countries with low SDI. Stroke rates were highest at middle levels of SDI and lowest at the highest SDI. Most of the changes in DALY rates of neurological disorders with development were driven by changes in YLLs. Interpretation Neurological disorders are an important cause of disability and death worldwide. Globally, the burden of neurological disorders has increased substantially over the past 25 years because of expanding population numbers and ageing, despite substantial decreases in mortality rates from stroke and communicable neurological disorders. The number of patients who will need care by clinicians with expertise in neurological conditions will continue to grow in coming decades. Policy makers and health-care providers should be aware of these trends to provide adequate services

    In vivo comparison of the proangiogenic properties of chlordecone and three of its dechlorinated derivatives formed by in situ chemical reduction

    Get PDF
    In situ chemical reduction (ISCR) has been identified as a possible way for the remediation of soils contaminated by chlordecone (CLD). Evidences provided by the literature indicate an association between the development of prostate cancer and CLD exposure (Multigner et al. 2010). In a previous in vitro study, we demonstrated that the two main dechlorinated CLD derivatives formed by ISCR, CLD-1Cl, and CLD-3Cl have lower cytotoxicity and proangiogenic properties than CLD itself (Legeay et al. 2017). By contrast, nothing is known on the in vivo proangiogenic effect of these dechlorinated derivatives. Based on in vitro data, the aims of this study were therefore to evaluate the in vivo influence of CLD and three of its dechlorinated metabolites in the control of neovascularization in a mice model of prostate cancer. The proangiogenic effect of CLD and three of its dechlorinated derivatives, CLD-1Cl, CLD-3Cl, and CLD-4Cl, was evaluated on a murine model of human prostate tumor (PC-3) treated, at two exposure levels: 33 μg/kg and 1.7 μg/kg respectively reflecting acute and chronic toxic exposure in human. The results of serum measurements show that, for the same ingested dose, the three metabolite concentrations were significantly lower than that of CLD. Dechlorination of CLD lead therefore to molecules that are biologically absorbed or metabolized, or both, faster than the parent molecule. Prostate tumor growth was lower in the groups treated by the three metabolites compared to the one treated by CLD. The vascularization measured on the tumor sections was inversely proportional to the rate of dechlorination, the treatment with CLD-4Cl showing no difference with control animals treated with only the vehicle oil used for all substances tested. We can therefore conclude that the proangiogenic effect of CLD is significantly decreased following the ISCR-resulting dechlorination. Further investigations are needed to elucidate the molecular mechanisms by which dechlorination of CLD reduces proangiogenic effects in prostate tumor

    PloS one

    Get PDF
    The vasculoprotective properties of delphinidin are driven mainly by its action on endothelial cells. Moreover, delphinidin displays anti-angiogenic properties in both in vitro and in vivo angiogenesis models and thereby might prevent the development of tumors associated with excessive vascularization. This study was aimed to test the effect of delphinidin on melanoma-induced tumor growth with emphasis on its molecular mechanism on endothelial cells. Delphinidin treatment significantly decreased in vivo tumor growth induced by B16-F10 melanoma cell xenograft in mice. In vitro, delphinidin was not able to inhibit VEGFR2-mediated B16-F10 melanoma cell proliferation but it specifically reduced basal and VEGFR2-mediated endothelial cell proliferation. The anti-proliferative effect of delphinidin was reversed either by the MEK1/2 MAP kinase inhibitor, U-0126, or the PI3K inhibitor, LY-294002. VEGF-induced proliferation was reduced either by U-0126 or LY-294002. Under these conditions, delphinidin failed to decrease further endothelial cell proliferation. Delphinidin prevented VEGF-induced phosphorylation of ERK1/2 and p38 MAPK and decreased the expression of the transcription factors, CREB and ATF1. Finally, delphinidin was more potent in inhibiting in vitro cyclic nucleotide phosphodiesterases (PDEs), PDE1 and PDE2, compared to PDE3-PDE5. Altogether delphinidin reduced tumor growth of melanoma cell in vivo by acting specifically on endothelial cell proliferation. The mechanism implies an association between inhibition of VEGF-induced proliferation via VEGFR2 signalling, MAPK, PI3K and at transcription level on CREB/ATF1 factors, and the inhibition of PDE2. In conjunction with our previous studies, we demonstrate that delphinidin is a promising compound to prevent pathologies associated with generation of vascular network in tumorigenesis

    Evaluating the performance of artificial intelligence software for lung nodule detection on chest radiographs in a retrospective real-world UK population

    Get PDF
    Objectives Early identification of lung cancer on chest radiographs improves patient outcomes. Artificial intelligence (AI) tools may increase diagnostic accuracy and streamline this pathway. This study evaluated the performance of commercially available AI-based software trained to identify cancerous lung nodules on chest radiographs. Design This retrospective study included primary care chest radiographs acquired in a UK centre. The software evaluated each radiograph independently and outputs were compared with two reference standards: (1) the radiologist report and (2) the diagnosis of cancer by multidisciplinary team decision. Failure analysis was performed by interrogating the software marker locations on radiographs. Participants 5722 consecutive chest radiographs were included from 5592 patients (median age 59 years, 53.8% women, 1.6% prevalence of cancer). Results Compared with radiologist reports for nodule detection, the software demonstrated sensitivity 54.5% (95% CI 44.2% to 64.4%), specificity 83.2% (82.2% to 84.1%), positive predictive value (PPV) 5.5% (4.6% to 6.6%) and negative predictive value (NPV) 99.0% (98.8% to 99.2%). Compared with cancer diagnosis, the software demonstrated sensitivity 60.9% (50.1% to 70.9%), specificity 83.3% (82.3% to 84.2%), PPV 5.6% (4.8% to 6.6%) and NPV 99.2% (99.0% to 99.4%). Normal or variant anatomy was misidentified as an abnormality in 69.9% of the 943 false positive cases. Conclusions The software demonstrated considerable underperformance in this real-world patient cohort. Failure analysis suggested a lack of generalisability in the training and testing datasets as a potential factor. The low PPV carries the risk of over-investigation and limits the translation of the software to clinical practice. Our findings highlight the importance of training and testing software in representative datasets, with broader implications for the implementation of AI tools in imaging

    Quantifying myocardial blood flow and resistance using 4D-flow cardiac magnetic resonance imaging

    Get PDF
    Background. Ischaemia with nonobstructive coronary arteries is most commonly caused by coronary microvascular dysfunction but remains difcult to diagnose without invasive testing. Myocardial blood fow (MBF) can be quantifed noninvasively on stress perfusion cardiac magnetic resonance (CMR) or positron emission tomography but neither is routinely used in clinical practice due to practical and technical constraints. Quantifcation of coronary sinus (CS) fow may represent a simpler method for CMR MBF quantifcation. 4D fow CMR ofers comprehensive intracardiac and transvalvular fow quantifcation. However, it is feasibility to quantify MBF remains unknown. Methods. Patients with acute myocardial infarction (MI) and healthy volunteers underwent CMR. Te CS contours were traced from the 2-chamber view. A reformatted phase contrast plane was generated through the CS, and fow was quantifed using 4D fow CMR over the cardiac cycle and normalised for myocardial mass. MBF and resistance (MyoR) was determined in ten healthy volunteers, ten patients with myocardial infarction (MI) without microvascular obstruction (MVO), and ten with known MVO. Results. MBF was quantifed in all 30 subjects. MBF was highest in healthy controls (123.8 ± 48.4 mL/min), signifcantly lower in those with MI (85.7 ± 30.5 mL/min), and even lower in those with MI and MVO (67.9 ± 29.2 mL/min/) (P < 0.01 for both diferences). Compared with healthy controls, MyoR was higher in those with MI and even higher in those with MI and MVO (0.79 (±0.35) versus 1.10 (±0.50) versus 1.50 (±0.69), P = 0.02). Conclusions. MBF and MyoR can be quantifed from 4D fow CMR. Resting MBF was reduced in patients with MI and MVO

    Global, regional, and national under-5 mortality, adult mortality, age-specific mortality, and life expectancy, 1970-2016: a systematic analysis for the Global Burden of Disease Study 2016

    Get PDF
    publishedVersio
    corecore